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Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression
@ Fixed feature vectors: v; € RY for each datapoint [ =1,...,L
@ Binary class labels: Y, € {0,1}, P(Y; =1 v, ) =
© Unknown parameter vector: 5 ~ N(0, 1)

1
14e—Boon)

@ Generative model simple to express
@ Posterior distribution over unknown parameters is complex
e Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo
(MCMQCQ) to (eventually) draw samples from the posterior distribution

° Benefit Approximates intractable posterior expectations

pr x)dx with asymptotically exact sample
estlmates EQ[h(X)] = l S h(x)

n =1
@ Problem: Each new MCMC sample point x; requires iterating
over entire observed dataset: prohibitive when dataset is large!
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Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC)
posterior inference to massive datasets?

o MCMC Benefit: Approximates intractable posterior
expectations Ep|h pr x)dx with asymptotically

n

exact sample estlmates Eq [h(X)] = l Yoy h(w)

@ Problem: Each point z; requires itergting over entire dataset!
Template solution: Approximate MCMC with subset posteriors
[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

@ Approximate standard MCMC procedure in a manner that makes

use of only a small subset of datapoints per sample

@ Reduced computational overhead leads to faster sampling and

reduced Monte Carlo variance

@ Introduces asymptotic bias: target distribution is not stationary

@ Hope that for fixed amount of sampling time, variance reduction

will outweigh bias introduced
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Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

@ Hope that for fixed amount of sampling time, variance reduction
will outweigh bias introduced

Introduces new challenges
@ How do we compare and evaluate samples from approximate
MCMC procedures?
@ How do we select samplers and their tuning parameters?
@ How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size,
trace plots, and variance diagnostics assume convergence to the
target distribution and do not account for asymptotic bias

This talk: Introduce new quality measures suitable for comparing
the quality of approximate MCMC samples
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Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of
any two samples approximating a common target distribution

Given
e Continuous target distribution P with support X = R? and
density p
e p known up to normalization, integration under P is intractable
e Sample points z,..., 1, € X
e Define discrete distribution (), with, for any function A,
Eq, [M(X)] = 13" | h(x;) used to approximate Ep[h(Z)]

n
e We make no assumption about the provenance of the z;

Goal: Quantify how well Eq),, approximates Ep in a manner that

|. Detects when a sample sequence is converging to the target

[I. Detects when a sample sequence is not converging to the target
[11. Is computationally feasible
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Integral Probability Metrics

Goal: Quantify how well Eq, approximates Ep

Idea: Consider an integral probability metric (IPM) [Mmiiller, 1997]
dy(Qn, P) = sup [Eq,[h(X)] = Ep[h(Z)]|
@ Measures maximum discrepancy between sample and target
expectations over a class of real-valued test functions H
e When H sufficiently large, convergence of dy(Q,, P) to zero
implies (@Q,)n>1 converges weakly to P (Requirement II)
Problem: Integration under P intractable!
= Most IPMs cannot be computed in practice

Idea: Only consider functions with Ep[h(Z)] known a priori to be 0
@ Then IPM computation only depends on @),,!
@ How do we select this class of test functions?
@ Will the resulting discrepancy measure track sample sequence
convergence (Requirements | and 11)?

@ How do we solve the resulting optimization problem in practice?
Mackey (MSR) Inference and Learning with Stein’s Method December 15, 2021 6/32



Stein’'s Method

Stein’s method [1972] provides a recipe for controlling convergence:
@ Identify operator 7 and set G of functions g : X — R? with
Ep[(Tg)(Z)] =0 forall geg.
T and G together define the Stein discrepancy (cormam and Mackey, 2015]
S(Qn,T,6) = up [Bq, (T = drg(Qn, P).

an IPM-type measure with no explicit integration under P

@ Lower bound §(Q,.,7T,G) by reference IPM dy(Q,,, P)
= (Qn)n>1 converges to P whenever S(Q,,,T,G) — 0 (Req. II)
e Performed once, in advance, for large classes of distributions

© Upper bound S(Q,,, 7,G) by any means necessary to
demonstrate convergence to 0 (Requirement I)

Standard use: As analytical tool to prove convergence
Our goal: Develop Stein discrepancy into practical quality measure
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|dentifying a Stein Operator T

Goal: Identify operator T for which Ep[(T¢)(Z)] =0 forallg € G

Approach: Generator method of Barbour [1988, 1990], Gstze [1991]
o Identify a Markov process (Z;);>¢ with stationary distribution P
@ Under mild conditions, its infinitesimal generator
(Au)(z) = %gn( [w(Z4) | Zo = 2] — u(x))/t
satisfies Ep[(Au)(Z)] =0

Overdamped Langevin diffusion: dZ; = 1V log p(Z;)dt + dW,

o Generator: (Apu)(z) = 3(Vu(z), Vlogp(z)) + 3(V, Vu(z))
e Stein operator: (7pg)(z) = (g(z), Vlog p(z)) + (V, g(x))

[Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]

o Depends on P only through V log p; computable even if p
cannot be normalized!
o Ep[(Tpg)(Z)] =0 for all g : X — R? in classical Stein set

G = {9+ 5D,z masx (|lg(@)[", [ Vg ()|, TLA=Te0I) < 1
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Detecting Convergence and Non-convergence

Goal: Show classical Stein discrepancy S(Q,, 7p,Gj.) — 0 if
and only if (Q,),>1 converges to P
@ In the univariate case (d = 1), known that for many targets P,
S(Qn, Tp,Gy) — 0 only if Wasserstein dyy,  (Qn, P) — 0
[Stein, Diaconis, Holmes, and Reinert, 2004, Chatterjee and Shao, 2011, Chen, Goldstein, and Shao, 2011]
e Few multivariate targets have been analyzed (see [Reinert and Rsllin,
2009, Chatterjee and Meckes, 2008, Meckes, 2009] for multivariate Gaussian)

New contribution [Gorham, Duncan, Volimer, and Mackey, 2019]

Theorem (Stein Discrepancy-Wasserstein Equivalence)

If the Langevin diffusion couples at an integrable rate and V logp is
Lipschitz, then S(Qn, Tp, g”.”) —-0& dWH-H (Qn, P) — 0.

@ Examples: strongly log concave P, Bayesian logistic regression
or robust t regression with Gaussian priors, Gaussian mixtures
e Conditions not necessary: template for bounding S(Q», 7p, Gj.|)
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A Simple Example

Scaled
Student's t
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e For target P = N(0,1), compare i.i.d. N'(0,1) sample sequence
(1., to scaled Student's t sequence ()., with matching variance

o Expect S(Qin, Tr, G).0.6:) = 0 & S(Q.., Tr, G)1.0.61) 7 0
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A Simple Example
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@ Middle: Recovered optimal functions ¢

e Right: Associated test functions h(z) = (Tpg)(z) which best
discriminate sample () from target P
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Selecting Sampler Hyperparame

Step size, € = 5e-05 Step size, € = 5e-03 Step size, € = 5e-02
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Step size, € X1
Target posterior density: p(z) oc 7(x) [T, 7(y | )
Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]
Tiyr ~ N (g + §(Vlog m(zy) + ﬁ ZleBk Vg m(yi|xy)), el)
@ Random batch Bj of datapoints used to draw each sample point
o Step size € too small = slow mixing
e Step size € too large = sampling from very different distribution
e Standard MCMC selection criteria like effective sample size
(ESS) and asymptotic variance do not account for this bias

ESS maximized at ¢ = 5 x 1072, Stein minimized at e = 5 x 1073
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Alternative Stein Sets §

Goal: Identify a more “user-friendly” Stein set G than the classical

Approach: Reproducing kernels k£ : X' x X — R [Oates, Girolami, and
Chopin, 2016, Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016]
@ A reproducing kernel & is symmetric (k(z,y) = k(y,x)) and
positive semidefinite (Z”czclk(zl, z) > 0,Vz; € X, ¢; € R)
— o slle—yll3 SRR E—
o Gaussian: k(z,y) =€ 2 2 IMQ: k(z,y) = RN P
@ Generates a reproducing kernel Hilbert space (RKHS) Ky,
@ Define the kernel Stein set [Gorham and Mackey, 2017]
A * A
G ={g9="(91,--,94) | v <1 for v; = [|g;|}
@ Yields closed-form kernel Stein discrepancy (KSD)
S(Qu. Te, Ge) = o]l for w; 2 /520, ks, ).

e Reduces to parallelizable pairwise evaluations of Stein kernels

K} (33 y) e ) W )V:vjvy]( p(z)k(x,y)p(y))
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Detecting Non-convergence

Goal: Show (Q;),>1 converges to P whenever S(Q,,, Tp, Gr) — 0

Theorem (Univariate KSD detects non-convergence (coram and Mackey, 2017])

Suppose P € P and k(z,y) = ®(x — y) for ® € C? with a
non-vanishing generalized Fourier transform. If d =1, then (Q,)n>1
converges weakly to P whenever S(Q.,, Tp, Gx) — 0.

@ P is the set of targets P with Lipschitz V logp and distant
strong log concavity ({2 R@/PWNY=2) >} for (|2 — yl, > 1)

lz—yll3
o Includes Bayesian logistic and Student’s t regression with
Gaussian priors, Gaussian mixtures with common covariance, ...

@ Justifies use of KSD with popular Gaussian, Matérn, or inverse
multiquadric kernels & in the univariate case
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Detecting Non-convergence

Goal: Show (Q,),>1 converges to P whenever S(Q,, Tp,Gr) — 0

@ In higher dimensions, KSDs based on common kernels fail to
detect non-convergence, even for Gaussian targets P

Theorem (KSD fails with light kernel tails [Gorham and Mackey, 2017])

Suppose d > 3, P = N(0,1;), and a = (3 — 1)71. If k(z,y) and its

derivatives decay at a o( ||z — y||,®) rate as ||z — yl|, — oo, then
S(Qn, Tp,Gr) — 0 for some (Q,,)n>1 not converging to P.

e Gaussian (k(z,y) = @—%Hx—yllg) and Matérn kernels fail for d > 3

o Inverse multiquadric kernels (k(z,y) = (1 + ||z — y||3)?) with
B < —1 fail for d > -2

@ The violating sample sequences (Q),,),>1 are simple to construct
Problem: Kernels with light tails ignore excess mass in the tails
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Detecting Non-convergence

Goal: Show (Q,),>1 converges to P whenever S(Q,, Tp,Gr) — 0
o Consider the inverse multiquadric (IMQ) kernel
k(x,y) = (¢ + ||z — y||3)? for some B < 0,c € R.
e IMQ KSD fails to detect non-convergence when < —1
@ However, IMQ KSD detects non-convergence when § € (—1,0)

Theorem (IMQ KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose P € P and k(z,y) = (2 + ||z — y||2)? for B € (—1,0). If
S(Qn, Tp,Gr) — 0, then (Q,)n>1 converges weakly to P.
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The Importance of Kernel Choice

Kernel Stein discrepancy
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Detecting Convergence

Goal: Show S(Q., Tp, Gr) — 0 whenever (Q),,),>1 converges to P

Proposition (KSD detects convergence [Gorham and Mackey, 2017])

Ifk € 052’2) and Vlog p Lipschitz and square integrable under P,
then S(Q., Tp, Gr) — 0 whenever the Wasserstein distance
dWII-H2(Q"’P) — 0.

@ Covers Gaussian, Matérn, IMQ, and other common bounded
kernels k
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Selecting Samplers

Stochastic Gradient Fisher Scoring (SGFS)
[Ahn, Korattikara, and Welling, 2012]
@ Approximate MCMC procedure designed for scalability

e Approximates Metropolis-adjusted Langevin algorithm but does
not use Metropolis-Hastings correction
e Target P is not stationary distribution

Goal: Choose between two variants

o SGFS-f inverts a d x d matrix for each new sample point
o SGFS-d inverts a diagonal matrix to reduce sampling time

e MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]

e 10000 images, 51 features, binary label indicating whether
image ofa 7Tora?9

@ Bayesian logistic regression posterior P
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Selecting Samplers
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o Left: IMQ KSD quality comparison for SGFS Bayesian logistic
regression (no surrogate ground truth used)

e Right: SGFS sample points (n = 5 x 10%) with bivariate
marginal means and 95% confidence ellipses (blue) that align
best and worst with surrogate ground truth sample (red)

@ Both suggest small speed-up of SGFS-d (0.0017s per sample vs.
0.0019s for SGFS-f) outweighed by loss in inferential accuracy
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Stochastic Stein Discrepancies

Issue: What if Vlogp is too expensive to evaluate?
o Posterior Vlogp(z) = Vlog7(x) + Y1, Vieg7(y; | x)

Solution: Stochastic Stein Discrepancies [coham, Raj, and Mackey, 2020]
@ Replace each V log p(x;) with stochastic gradient based on
randorT1 datapoint 'batch.: Vllog W(:EZ) + % ZleBi V log 7 (yi|x;)
@ Resulting stochastic Stein discrepancies inherit convergence
Contr0| Of standard SDS W|th prObabIhty 1 [Gorham, Raj, and Mackey, 2020]
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Beyond Sample Quality Comparison

Goodness-of-fit testing
@ Chwialkowski, Strathmann, and Gretton [2016] used the KSD S(Q,., Tp, Gk.)
to test whether a sample was drawn from a target distribution P
(see also Liu, Lee, and Jordan [2016])
@ Test with default Gaussian kernel k experienced considerable loss
of power as the dimension d increased

@ We recreate their experiment with IMQ kernel (3 = —1,¢=1)
o For n =500, generate sample (x;) | with x; = z; + u; e;
% % N(0, Iy) and u; 2 Unif[0, 1]. Target P = A(0, I,).
o Compare with standard normality test of Baringhaus and Henze [1988]

Table: Mean power of multivariate normality tests across 400 simulations

d=2 | d=5 | d=10 | d=15 | d=20 | d=25
B&H 1.0 | 1.0 1.0 091 | 057 | 0.26

Gaussian | 1.0 | 1.0 | 0.88 | 0.29 | 0.12 | 0.02
IMQ 1.0 1.0 1.0 1.0 1.0 1.0
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Beyond Sample Quality Comparison

Improving sample quality
@ Given sample points (z;)i_,, can minimize KSD S(Qn, Tp, Gr)
over all weighted samples Q,, = > | ¢, ()0, for ¢, a

probability mass function
® Liu and Lee [2016] do this with Gaussian kernel k(z,y) = e~ l#—vl2

e Bandwidth A set to median of the squared Euclidean distance
between pairs of sample points

@ We recreate their experiment with the IMQ kernel
N
k(z,y) = L+ glle —ylly) 72
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Improving Sample Quality
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Generating High-quality Samples

Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016]
@ Uses KSD to repeatedly update locations of n sample points:
Ty = xp+ 5 > (k(2, ) Vog p(a) + Vi, k(y, 2;))
e Approximates gradient step in KL divergence
e Asymptotic convergence guarantees [Liu, 2017, Gorham, Raj, and Mackey, 2020]
o Simple to implement (but each update costs n? time)
@ Stochastic SVGD: uses stochastic KSD = same guarantees
with many fewer likelihood evaluations (cormam, Raj, and Mackey, 2020]
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Generating High-quality Samples

Stein Points [Chen, Mackey, Gorham, Briol, and Oates, 2018]
@ Greedily minimizes KSD by constructing Q),, = %ZLI 0z, With

z, € argming S(“=2Q,—1 + £6,, Tp, Gr)

= argmin, E;.lzl ké(; @) SR (g, )
o Sends KSD to zero at O(y/log(n)/n) rate
Stein Point MCMC [Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019]
@ Suffices to optimize over iterates of a Markov chain
MCMC SP-MCMC
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Future Directions

Many opportunities for future development
@ Improving scalability while maintaining convergence control
1 Subsamphng Of |Ike|lh00d terms in Vlogp [Gorham, Raj, and Mackey, 2020]
e Inexpensive approximations of kernel matrix

o Finite set Stein discrepancies pitkrittum, Xu, Szabé, Fukumizu, and Gretton, 2017]:
low-rank kernel, linear runtime (but convergence control unclear)
@ Random feature Stein discrepancies [Huggins and Mackey, 2018]:
stochastic low-rank kernel, near-linear runtime + high probability
convergence control when (Q;,),>1 moments uniformly bounded
@ Exploring the impact of Stein operator choice
e An infinite number of operators 7 characterize P
e How is discrepancy impacted? How do we select the best 77
o Thm: If Vlogp bounded and k € C{""), then
S(Qn, Tp,Gr) — 0 for some (@Qp)n>1 not converging to P
o Diffusion Stein operators (T¢)(z) = —2-(V,p(x)a(x)g(x)) of

plx) " .
Gorham, Duncan, Vollmer, and Mackey [2019] May be appropriate for heavy tails
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Future Directions

Many opportunities for future development
© Addressing other inferential tasks
e Training generative adversarial networks [wang and Liu, 2016] and
variational autoencoders [pu, Gan, Henao, Li, Han, and Carin, 2017]
W, = , . - F
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Future Directions

Many opportunities for future development
© Addressing other inferential tasks
o Post-selection inference
o Constrained targets P arise when testing significance after
variable selection [Tian and Taylor, 2018]
o Stein Variational Mirror Descent and Mirrored SVGD can derive
confidence intervals for constrained P [shi, Liu, and Mackey, 2021]
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Future Directions

Many opportunities for future development
© Addressing other inferential tasks
e Post-selection inference
@ Stein Variational Mirror Descent and Mirrored SVGD can derive
confidence intervals from constrained P [shi, Liu, and Mackey, 2021]
o Non-convex optimization [Erdogdu, Mackey, and Shamir, 2018]

Example (Optimization with Discretized Diffusions [erdogdu, Mackey, and Shamir, 2018])

o To minimize f(x), choose a(x) = ¢l with a(x)V f(z) Lipschitz and
distantly dissipative ({2{EVI@—aWVIW.220) > g for ||z — y||, > r)

lz—yll3

e Approximate target sequence p,(z) e~ mf(@) using Markov chain

Trt1 ~ N(@n — Fa(@n)VE(zn) + 52(V, a(zn)), 2a(zn))

o Thm: min;<;<, Ef(z;) — min, f(x) (with explicit error bounds)
for appropriate ¢, and 7, when Vf,Va, and a'/? are Lipschitz

v
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Future Directions

Many opportunities for future development

© Addressing other inferential tasks

o Post-selection inference
e Stein Variational Mirror Descent and Mirrored SVGD can derive

confidence intervals from constrained P ([shi, Liu, and Mackey, 2021]
e Non-convex optimization [Erdogdu, Mackey, and Shamir, 2018]
min, f(z) = 5log(1+3«3), a(z) = (1+3[z[3)1, a(x)V f(z) = 5z

150 -~ | Gradient Descent (first 7000 iters)
----- Gradient Descent (next 3000 iters)
—— Langevin Algorithm (300 iters)

100~ —e— Designed Diffusion (15 iters)
50-] 4
0- \ A
—50- Y
—100-
—150- g i . T
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Future Directions

Many opportunities for future development
© Improving scalability while maintaining convergence control
e Subsampling of likelihood terms in V 10g p [Gorham, Raj, and Mackey, 2020]
e Inexpensive approximations of kernel matrix
o Finite set Stein discrepancies [itkrittum, Xu, Szabé, Fukumizu, and Gretton, 2017]
o Random feature Stein discrepancies [Huggins and Mackey, 2018]
@ Exploring the impact of Stein operator choice
e An infinite number of operators 7 characterize P
e How is discrepancy impacted? How do we select the best 77
o Diffusion Stein operators (7 g)(z) = ﬁ(v,p(x)m(:c)g(x» of
Gorham, Duncan, Vollmer, and Mackey [2019] May be appropriate for heavy tails
© Addressing other inferential tasks
o Post-selection inference [shi, Liu, and Mackey, 2021]
e Non-convex optimization [Erdogdu, Mackey, and Shamir, 2018]
e Parameter estimation (arp, Briol, Duncan, Girolami, and Mackey, 2019]
e MCMC thinning [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2020]
e Control variates

[Assaraf and Caffarel, 1999, Mira, Solgi, and Imparato, 2013, Oates, Girolami, and Chopin, 2016]
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Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

@ Consider the posterior distribution P induced by L datapoints y;
drawn i.i.d. from a Gau55|an mixture likelihood
YiIX R IN(X,2) + AN (X + X5,2)
under Gaussian priors on the parameters X € R?
o Draw m = 100 datapoints y; with parameters (z1,z2) = (0, 1)
e Induces posterior with second mode at (z1,x2) = (1, —1)

@ For range of parameters ¢, run approximate slice sampling for
148000 datapoint likelihood evaluations and store resulting
posterior sample (),

@ Use minimum IMQ KSD (8 = —=, ¢ = 1) to select appropriate ¢

e Compare with standard I\/ICMC parameter selection criterion,
effective sample size (ESS), a measure of Markov chain
autocorrelation

e Compute median of diagnostic over 50 random sequences
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Selecting Samplers

Setup
e MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]

e 10000 images, 51 features, binary label indicating whether
image ofa7ora9

@ Bayesian logistic regression posterior P
o L independent observations (y;,v;) € {1, —1} x R with

P(Y7 = 1fv;, X) = 1/(1 + exp(—(v;, X)))

e Flat improper prior on the parameters X € R?

e Use IMQ KSD (8 = —3,¢ = 1) to compare SGFS-f to SGFS-d
drawing 10° sample pomts and discarding first half as burn-in

@ For external support, compare bivariate marginal means and
95% confidence ellipses with surrogate ground truth Hamiltonian
Monte chain with 10° sample points [Ahn, Korattikara, and Welling, 2012]
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The Importance of Tightness

Goal: Show S§(Q,, Tp,Gx) — 0 only if Q,, converges to P

@ A sequence (Q,)n>1 is uniformly tight if for every € > 0, there
is a finite number R(e) such that sup,, Q,(||X ||, > R(€)) <€

e Intuitively, no mass in the sequence escapes to infinity

Theorem (KSD detects tight non-convergence [Gorham and Mackey, 2017])

Suppose that P € P and k(z,y) = ®(x — y) for ® € C* with a
non-vanishing generalized Fourier transform. If (Q,,)n>1 is uniformly
tight and S(Q., Tp, Gr) — 0, then (Q,)n>1 converges weakly to P.

@ Good news, but, ideally, KSD would detect non-tight sequences
automatically...
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