

Learning under algorithmic triage

Manuel Gomez Rodriguez

Includes joint work with Nastaran Okati, Abir De, Paramita Koley, Ali Zarezade and Niloy Ganguly

Most stunning developments in computing

Machine learning (ML) has *taught* machines to...

...to name a few

Machines achieve, or surpass, human performance at tasks for which intelligence is required

Machines learning is sometimes worse than humans

Learning under algorithmic triage

Develop machine learning models that are **optimized** to operate under **different automation levels**

They take **decisions** for a given **fraction of the instances** and **leave the remaining ones to humans**

- 1. The machine model is a linear function
- 2. We can defer some samples to humans, as dictated by a *triage policy*

Main challenge of learning under algorithmic triage

For each **triage policy**, there is an **optimal machine model**. However, the **triage policy** is also something **one seeks to optimize**.

Triage policy lets machine predict

Triage policy lets humans predict

Main challenge of learning under algorithmic triage

For each **triage policy**, there is an **optimal machine model**. However, the **triage policy** is also something **one seeks to optimize**.

Triage policy lets machine predict

Triage policy lets humans predict

Ridge regression, revisited

Ridge regression, revisited

Ridge regression becomes a combinatorial problem

Given a fixed set S, the optimal machine model is given by

$$\boldsymbol{w}^{*}(S) = \left(\lambda | \mathcal{S}^{c} | \mathbb{I} + \boldsymbol{X}_{\mathcal{S}^{c}} \boldsymbol{X}_{\mathcal{S}^{c}}^{\top}\right)^{-1} \boldsymbol{X}_{\mathcal{S}^{c}} \boldsymbol{y}_{\mathcal{S}^{c}}$$

Ridge regression becomes a combinatorial problem

Given a fixed set S, the optimal machine model is given by

$$\boldsymbol{w}^{*}(S) = \left(\lambda | \mathcal{S}^{c} | \mathbb{I} + \boldsymbol{X}_{\mathcal{S}^{c}} \boldsymbol{X}_{\mathcal{S}^{c}}^{\top}\right)^{-1} \boldsymbol{X}_{\mathcal{S}^{c}} \boldsymbol{y}_{\mathcal{S}^{c}}$$

Then, we can **rewrite** the **ridge regression problem** as a purely **combinatorial maximization problem**

$$\begin{array}{c} \underset{\mathcal{S}}{\operatorname{maximize}} \quad -\underbrace{\log \ell(\mathcal{S})}_{\mathcal{S}} \quad \text{subject to} \quad |\mathcal{S}| \leq n \\ \\ \underset{i \in S}{\checkmark} \quad \sum_{i \in S} c(\boldsymbol{x}_i, y_i) + \boldsymbol{y}_{\mathcal{S}^c}^\top \boldsymbol{y}_{\mathcal{S}^c} - \boldsymbol{y}_{\mathcal{S}^c}^\top \boldsymbol{X}_{\mathcal{S}^c}^\top \left(\lambda |\mathcal{S}^c| \mathbb{I} + \boldsymbol{X}_{\mathcal{S}^c} \boldsymbol{X}_{\mathcal{S}^c}^\top\right)^{-1} \boldsymbol{X}_{\mathcal{S}^c} \boldsymbol{y}_{\mathcal{S}^c} \end{array}$$

Ridge regression under human assistance is hard

Finding the solution to

maximize
$$-\log \ell(S)$$
 subject to $|S| \le n$
is a **NP-hard problem**

Ridge regression under human assistance is hard

Finding the solution to

$$\underset{\mathcal{S}}{\text{maximize}} - \log \ell(\mathcal{S}) \quad \text{subject to} \quad |\mathcal{S}| \le n$$

is a NP-hard problem

Proof sketch

k-sparse noise vector

16

Assume
$$c(m{x}_i,y_i)=0$$
 , $\lambda=0$ and $m{y}=m{X}^{ op}m{w}^*+m{b}^*$

Then, the problem can be viewed as the robust least square (RLSR) problem, which has been shown to be NP-hard:

$$\underset{\boldsymbol{w},\,\mathcal{S}}{\text{minimize}} \sum_{i\in\mathcal{S}} (y_i - \boldsymbol{x}_i^\top \boldsymbol{w})^2 \text{ subject to } |\mathcal{S}| = |\mathcal{V}| - n$$

The greedy algorithm proceeds iteratively.

At each iteration, it assigns to a human the sample in the training set that provides the largest marginal gain, i.e.,

$$\begin{array}{l} k^{*} \leftarrow \operatorname{argmax}_{k \in \mathcal{V} \setminus \mathcal{S}} - \log \ell(\mathcal{S} \cup k) + \log \ell(\mathcal{S}) \\ \mathcal{S} \leftarrow \mathcal{S} \cup \{k^{*}\} & \stackrel{\text{Points not yet}}{\underset{\text{assigned to humans}}{\text{Hommans}}} \end{array}$$

Does this simple greedy algorithm has approximation guarantees? 😳

The greedy algorithm has approximation guarantees

The function — $\log \ell(\mathcal{S})$ satisfies an **approximate notion of** submodularity

$$-\log \ell(\mathcal{S} \cup k) + \log \ell(\mathcal{S}) \ge (1 - \alpha) \left[-\log \ell(\mathcal{T} \cup k) + \log \ell(\mathcal{T}) \right]$$

for all $\mathcal{S} \subseteq \mathcal{T} \subset \mathcal{V}$
where $\alpha \le \alpha^*$ is the **generalized curvature**

Data dependent constant

We can conclude that the greedy algorithm will find a set Ssuch that $-\log \ell(S) \ge \left(1 + \frac{1}{1-\alpha}\right)^{-1} OPT$ [Gatmiry & Gomez Rodriguez, 18 ACM TOIS 2021]

The greedy algorithm spots samples where humans are accurate

$\boldsymbol{\rho}_{c}$: fraction of samples with low human error

As long as there are **samples that humans can predict with low error**, the **greedy algorithm outsources them to humans** and the **performance improves**

The greedy algorithm spots samples where humans are accurate

 $\boldsymbol{\rho}_{c}$: fraction of samples with low human error

As long as there are **samples that humans can predict with low error**, the **greedy algorithm outsources them to humans** and the **performance improves**

Convex margin-based classifiers, revisited

Key idea: measure the error in the human predictions (or, scores) using the same (hinge) loss used in the machine model

Convex optimization + combinatorial optimization

Given a fixed set S, we can find the **optimal machine model** using convex programming:

 $\boldsymbol{w}^*(\mathcal{V} \setminus \mathcal{S}), b^*(\mathcal{V} \setminus \mathcal{S}) = \operatorname{argmin}_{\boldsymbol{w}, b} \sum_{i \in \mathcal{V} \setminus \mathcal{S}} [\lambda \| \boldsymbol{w} \|^2 + (1 - y_i(\boldsymbol{w}^\top \Phi(\boldsymbol{x}_i) + b))_+]$

Then, we can **rewrite** the **optimization problem** as the maximization of the difference of two set functions:

$$\underset{\mathcal{S}}{\text{maximize}} \quad g(\mathcal{S}) - c(\mathcal{S}) \quad \text{subject to} \quad |\mathcal{S}| \leq n$$

Convex optimization + combinatorial optimization

We can show that the **two set functions** satisfy several **desirable properties**:

As a result, a **distorted greedy algorithm** is guaranteed to find a set S such that: $g(S) - c(S) \ge (1 - e^{-\gamma})g(\text{OPT}) - c(\text{OPT})$

We can upper-bound this constant

Differentiable learning under triage

So far, we "solved" the problem of **learning under triage for ridge regression and SVMs**.

The solutions are specialized and it is not easy to extend the resulting methodology to, e.g., deep learning.

Differentiable learning under triage

So far, we "solved" the problem of **learning under triage for ridge regression and SVMs**.

The solutions are specialized and it is not easy to extend the resulting methodology to, e.g., deep learning.

Next, we design a principled & scalable method that builds upon optimization methods (e.g., SGD) used in deep learning

- It does not increase the complexity of vanilla SGD
- → It is very easy to implement
- → It is guaranteed to converge to a local minimum

Learning under triage, revisited

We look for the triage policy $\pi(\mathbf{x})$ and predictive model $m(\mathbf{x})$ that minimize a loss function $\ell(\hat{y}, y)$

Triage policy
$$\begin{bmatrix} \pi(\mathbf{x}) = 0 & \text{Model predicts sample x} \\ \pi(\mathbf{x}) = 1 & \text{Human predicts sample x} \end{bmatrix}$$

The optimal triage policy is a threshold rule

Let $m \in \mathcal{M}$ be any fixed predictive model. Then, the optimal triage policy $\pi_{m,b}^*(\mathbf{x})$ is a **deterministic threshold rule**:

When is a predictive model suboptimal under triage?

Let $m_{\theta_0^*}$ the optimal predictive model under full automation

Average gradient on all samples

$$\mathbf{\mathbb{E}}_{\mathbf{x},y}\left[\nabla_{\theta} \ \ell(m_{\theta}(\mathbf{x}),y)|_{\theta=\theta_{0}^{*}}\right] = \mathbf{0}$$

When is a predictive model suboptimal under triage?

Let $m_{\theta_0^*}$ the optimal predictive model under full automation

Average gradient on all samples

$$\mathbf{\mathbb{E}}_{\mathbf{x},y}\left[\nabla_{\theta} \ \ell(m_{\theta}(\mathbf{x}), y)|_{\theta=\theta_{0}^{*}}\right] = \mathbf{0}$$

Let $\pi_{m_{\theta_0^*}, b}^*$ its optimal triage policy under max. triage level b. Then, if $\int_{\mathbf{x} \in \mathcal{V}} \mathbb{E}_{y|\mathbf{x}} \left[\nabla_{\theta} \ell(m_{\theta}(\mathbf{x}), y)|_{\theta = \theta_0^*} \right] dP \neq \mathbf{0}$

Average gradient on the set of samples \mathcal{V} that $\pi^*_{m_{\theta^*},b}$ lets the model predicts

When is a predictive model suboptimal under triage?

Let $m_{\theta_0^*}$ the optimal predictive model under full automation

Average gradient on all samples

$$\mathbf{\mathbb{E}}_{\mathbf{x},y}\left[\nabla_{\theta} \ \ell(m_{\theta}(\mathbf{x}), y)|_{\theta=\theta_{0}^{*}}\right] = \mathbf{0}$$

Let $\pi_{m_{\theta_0^*}, b}^*$ its optimal triage policy under max. triage level b. Then, if $\int_{\mathbf{x} \in \mathcal{V}} \mathbb{E}_{y|\mathbf{x}} \left[\nabla_{\theta} \ell(m_{\theta}(\mathbf{x}), y)|_{\theta = \theta_0^*} \right] dP \neq \mathbf{0}$ Average gradient on the set of samples \mathcal{V} that $\pi_{m_{\theta_0^*}, b}^*$ lets the model predicts

Then, there exists a better predictive model under $\pi^*_{m_{\theta_0^*},b}$: $L(\pi^*_{m_{\theta_0^*},b}, m_{\theta_0^*}) > \min_{\theta \in \Theta} L(\pi^*_{m_{\theta},b}, m_{\theta})$

Augmenting SGD to learn under triage

Step t = 0

Train predictive model $m_{\theta_0^*}$ using SGD with samples for which $\pi_0(\mathbf{x}) = 0$

Augmenting SGD to learn under triage

Step t = 0

Augmenting SGD to learn under triage

Train predictive model m_{θ_t} using SGD with samples for which $\pi^*_{m_{\theta_{t-1}},b}(\mathbf{x}) = 0$ Under mild conditions, it holds that:

$$L(\pi_{m_{\theta_{t-1}},b}^*, m_{\theta_{t-1}}) < L(\pi_{m_{\theta_t},b}^*, m_{\theta_t})$$

The performance of the triage policies and predictive models improves in each step

An implementation of the algorithm with Monte-Carlo estimates converges to a local minimum of the empirical loss

Global guarantees for convex losses

Under **convex losses**, it holds that:

$$\lim_{t \to \infty} L(\pi^*_{m_{\theta_t}, b}, m_{\theta_t}) - L(\pi^*_{m_{\theta^*}, b}, m_{\theta^*}) \leq \frac{4H^2 \Lambda_{\max}}{\Lambda^2_{\min}(1-b)^2}$$
where
$$Maximum \text{ level} of triage$$

$$\ell(m_{ heta}(\mathbf{x}), y) - \ell(m_{ heta'}(\mathbf{x}), y) \leq H \cdot \| heta - heta'\|$$

 $\Lambda_{\min} \mathbb{I} \ \preccurlyeq \
abla^2_{ heta} \, \ell(m_{ heta}(\mathbf{x}), y) \ \preccurlyeq \ \Lambda_{\max} \mathbb{I}$

Let m_{θ_T} and $\pi^*_{m_{\theta_T},b}(\mathbf{x})$ the last predictive model and its optimal triage policy.

At test time, we have a problem:

we cannot compute the triage value $\pi^*_{m_{\theta_T},b}(\mathbf{x})$ for unseen samples. We do not know the value of the model/human loss!

Let m_{θ_T} and $\pi^*_{m_{\theta_T},b}(\mathbf{x})$ the last predictive model and its optimal triage policy.

At test time, we have a problem:

we cannot compute the triage value $\pi^*_{m_{\theta_T},b}(\mathbf{x})$ for unseen samples. We do not know the value of the model/human loss!

Solution:

we train a parameterized triage policy $\hat{\pi}_{\gamma}(\mathbf{x})$ to approximate the optimal triage policy $\pi^*_{m_{\theta_T},b}(\mathbf{x})$

37

Learning under triage on real datasets

Few public datasets with several human predictions per instance, necessary to estimate the human loss per instance.

Learning under triage on real datasets

Few public datasets with several human predictions per instance, necessary to estimate the human loss per instance.

Experiments with **two datasets** from **applications in content moderation** and **scientific discovery**:

→ Hatespeech:

25k tweets containing lexicons used in hate speech3-5 human predictions per instancelabels = {hate-speech, offensive, neither}

→ Galaxy zoo:

10k galaxy images 30+ human predictions per instance labels = {early-type, spiral}

Model vs human loss on the Hatespeech dataset

The model learns to specialize in a region of the feature space, where it achieves low loss, and gives up on the rest, where the loss is very high

Model vs human loss on the Galaxy zoo dataset

The model learns to specialize in a region of the feature space, where it achieves low loss, and gives up on the rest, where the loss is very high

Where do we go from here?

- We have focused on independent samples. Algorithmic triage in sequential decision making (e.g. semi-autonomous driving).
- → We have assumed each instance is either predicted by a model or by a human. All instances predicted by humans, who are informed by a model.
- → Validate algorithmic triage using interventional experiments.

Thanks!

Regression under human assistance, AAAI 2020

https://arxiv.org/abs/1909.02963 https://github.com/Networks-Learning/regression-under-assistance

Classification under human assistance, AAAI 2021

https://arxiv.org/abs/2006.11845 https://github.com/Networks-Learning/classification-under-assistance

Differentiable learning under triage, NeurIPS 2021

https://arxiv.org/abs/2103.08902 https://github.com/Networks-Learning/differentiable-learning-under-triage 43