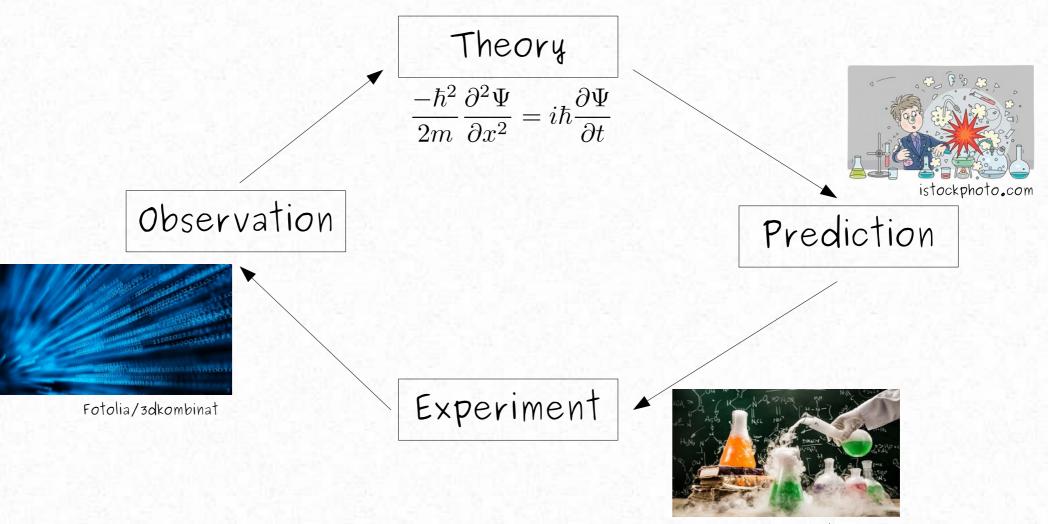
Symbolic Regression and Equation Learning

by Georg Martius

MPI for Intelligent Systems, Tübingen Autonomous Learning Group

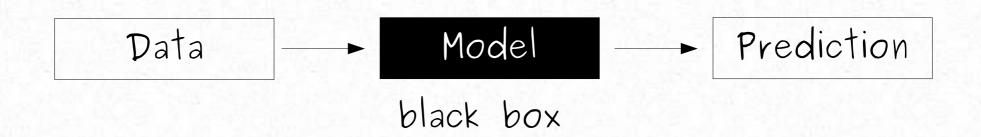
Typical loop of understanding ...

Theory: something we can understand involves mechanisms and their interaction



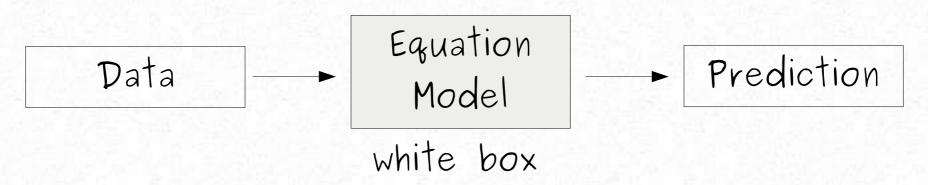
martech.org

Machine learning view



Machine learning view

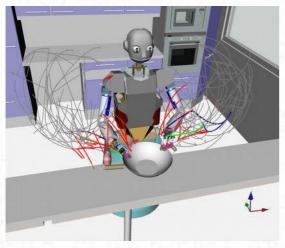
Symbolic Regression



- » identify underlying equations (from observed data)
- > typically solved by discrete search (e.g. Genetic Algorithms) Today:
- » short overview of Symbolic Regression methods
- » Symbolic Regression via Machine Learning
 - » Equation Learner (EQL)
 - > Transformer-based guided search (NesymRes)

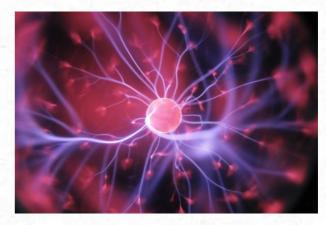
My Motivation

Model-based Control



- > for planning
- > data efficiency
- safety

Natural Sciences

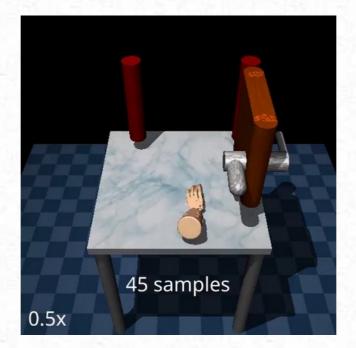


(Uni st. Andrews)

- » Finding interpretable models of data
- » Use prior knowledge of system

Model-based Planning

Instruction/reward: open the door



With an accurate model, planning can be very effective

Pinneri, Sawant, Blaes, ..., GM. CORL 2020

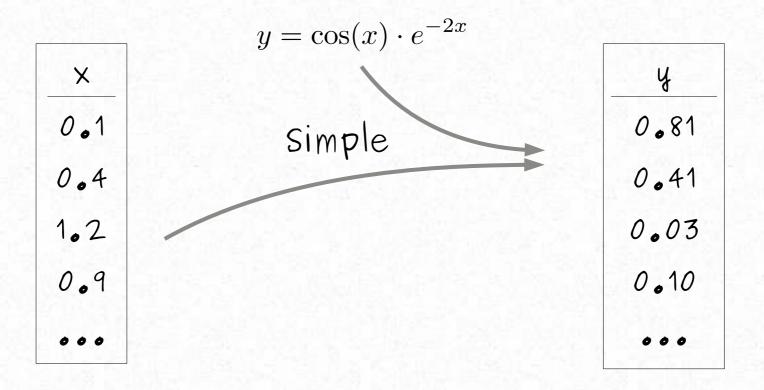
Symbolic Regression

Data:

 $\{(x_1, y_1), (x_2, y_2), \cdots\}$

Ansatz:

y = f(x) + noise f is a concise analytical equation (known base-functions and compositions)



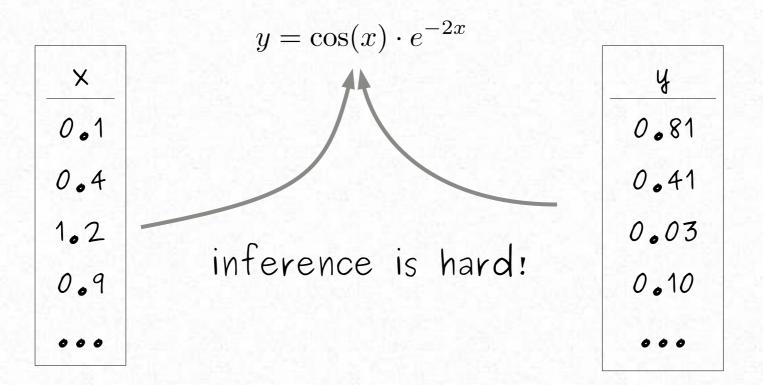
Symbolic Regression

Data:

 $\{(x_1, y_1), (x_2, y_2), \cdots\}$

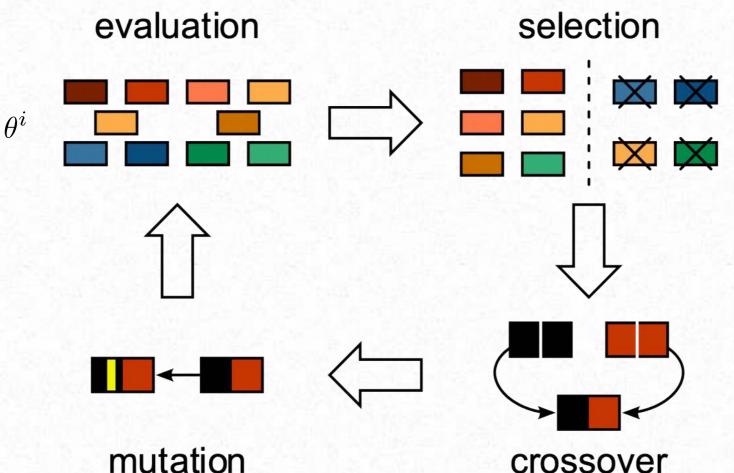
Ansatz:

y = f(x) + noise f is a concise analytical equation (known base-functions and compositions)



Classical Solution: Genetic Algorithm

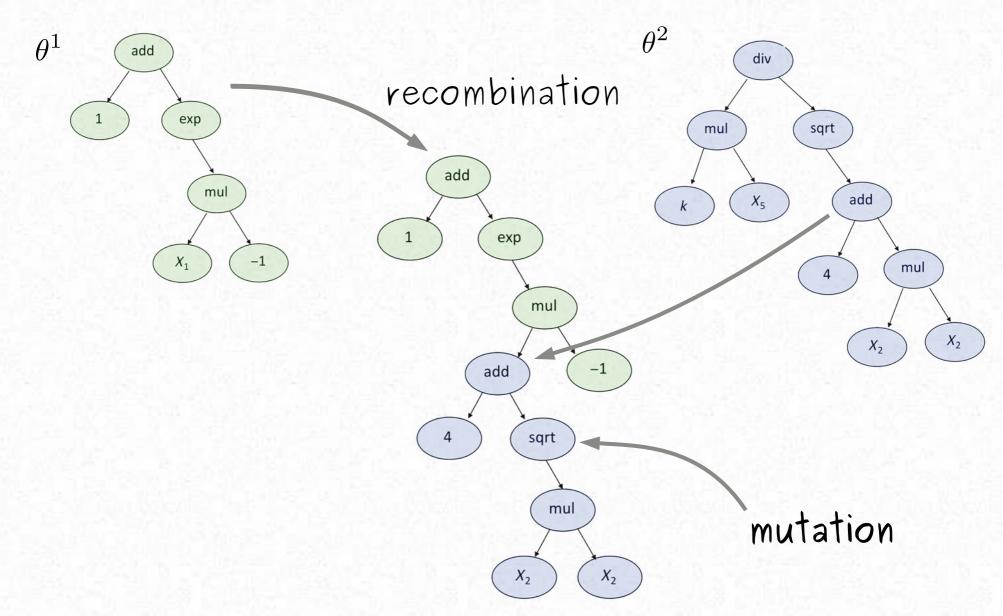
- discrete search method for solving $rgmin_{ heta}f(heta)$
- · works for undifferentiable functions f
- · works in relatively large spaces



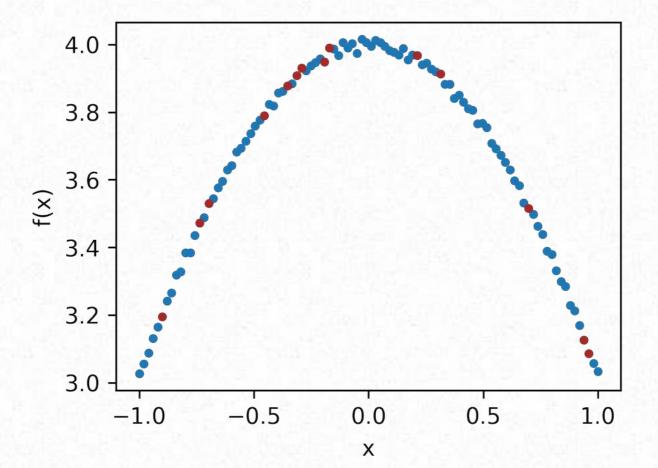
www.strong.io/blog/evolutionary-optimization

Classical Solution: Genetic Algorithm

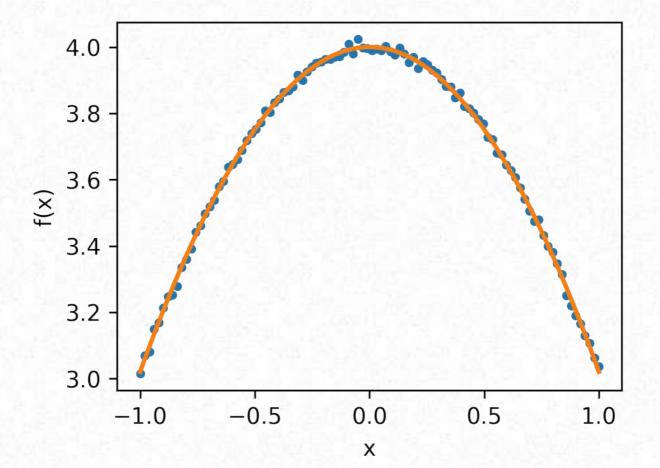
· search in the space of expression graphs



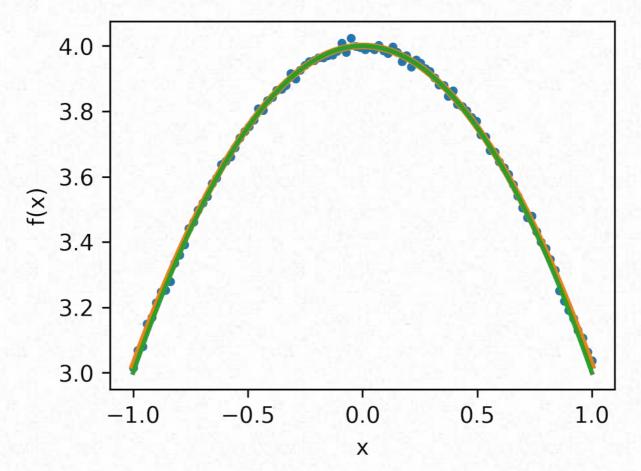
Data



solution 1

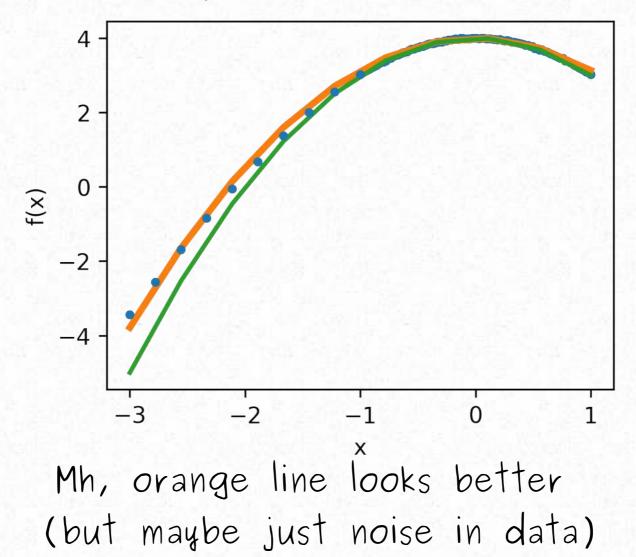


solution 1 or solution 2?

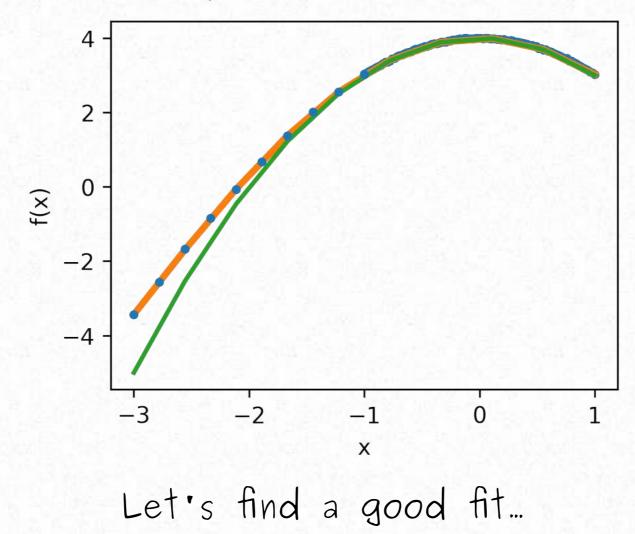


perform the same with respect to i.i.d. validation data

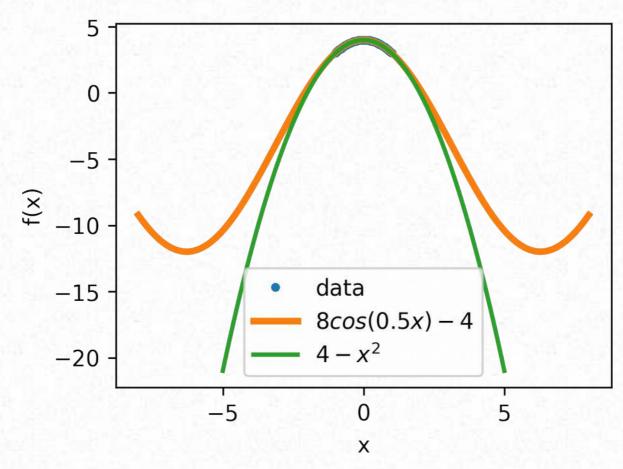
Maybe need more data?



Maybe need more data?



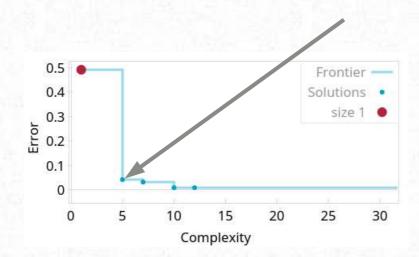
Uff, quite different solutions after all ...



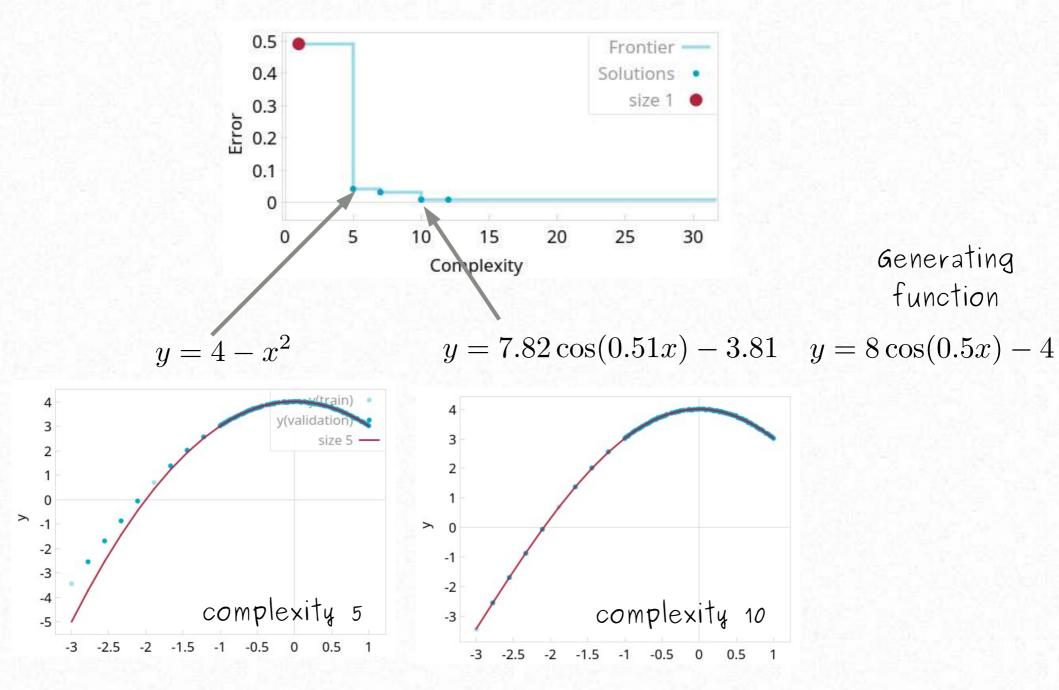
Need domain knowledge (e.g. which functions are likely)

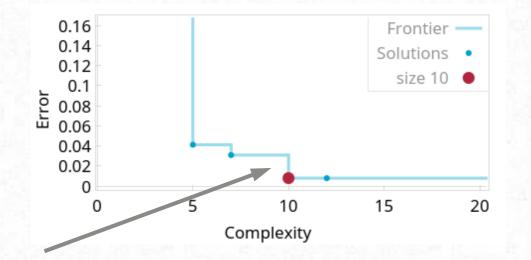
- Machine Learning: validation set
- Symbolic regression: take the least complex model

Is there really just one answer? No \rightarrow Family of Pareto-optimal solutions



best equation with this complexity



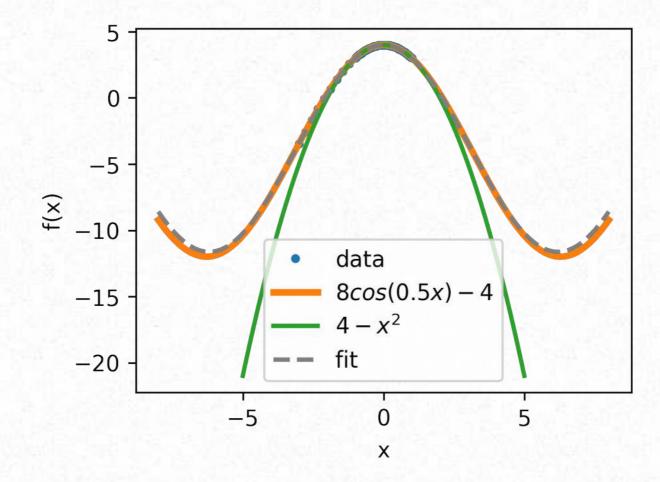


looking for jumps

Demo: run Eureqa

Eurega: GA-based method, highly optimized originally by Schmidt and Lipson discontinued, now: https://www.datarobot.com/nutonian only as online tool

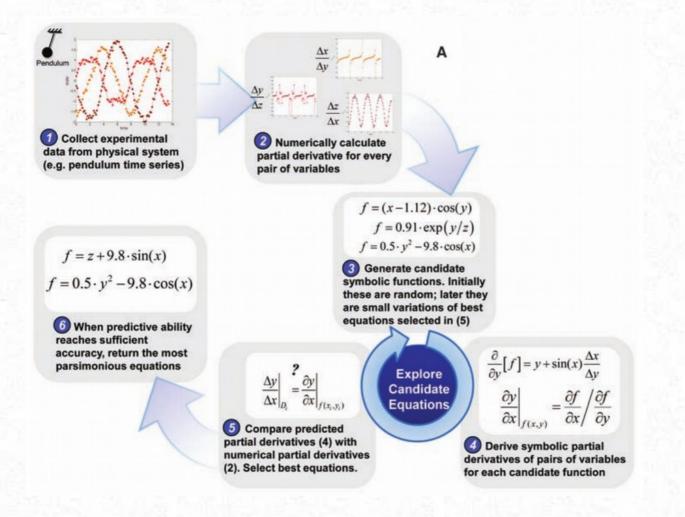
Results from Eurega



Eureqa: discontinued, now: https://www.datarobot.com/nutonian

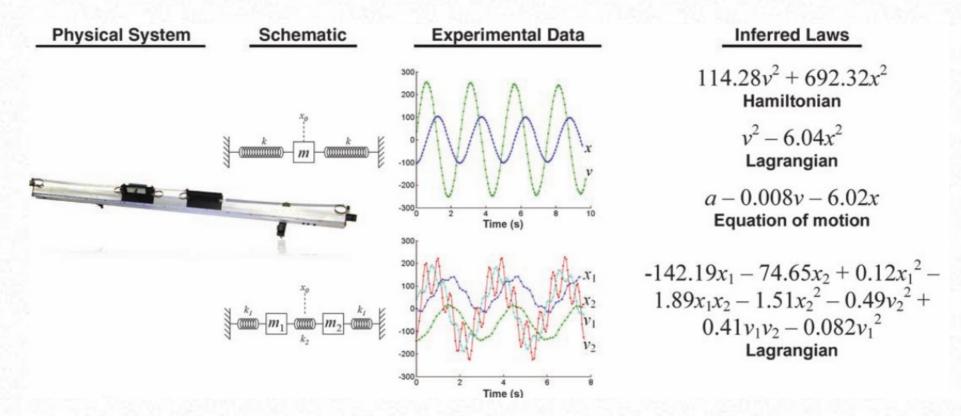
Michael Schmidt¹ and Hod Lipson^{2,3}*

Science, 2009



Michael Schmidt¹ and Hod Lipson^{2,3}*

Science, 2009

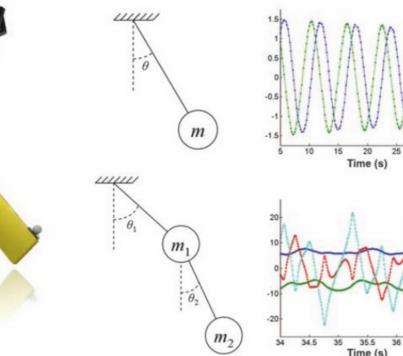


Michael Schmidt¹ and Hod Lipson^{2,3}*

000

36.5

Science, 2009

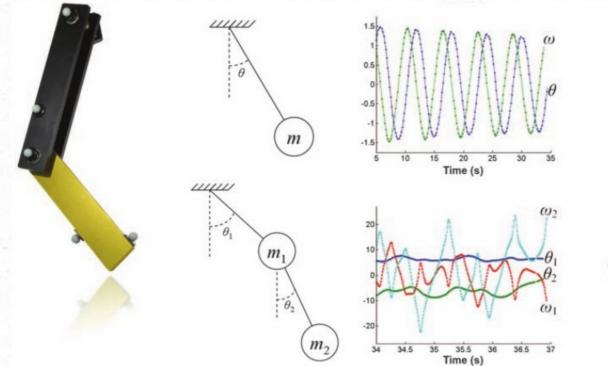


 $\begin{array}{c} 1.37 \cdot \omega^{2} + 3.29 \cdot \cos(\theta) \\ \text{Lagrangian} \\ 2.71 \alpha + 0.054 \omega - 3.54 \sin(\theta) \\ \text{Equation of motion} \\ (x - 77.72)^{2} + (y - 106.48)^{2} \\ \text{Circular manifold} \end{array}$

 $\omega_1^2 + 0.32\omega_2^2 - 124.13\cos(\theta_1) - 46.82\cos(\theta_2) + 0.82\omega_1\omega_2\cos(\theta_1 - \theta_2)$ Hamiltonian

Michael Schmidt¹ and Hod Lipson^{2,3}*

Science, 2009



 $1.37 \cdot \omega^{2} + 3.29 \cdot \cos(\theta)$ Lagrangian $2.71\alpha + 0.054\omega - 3.54\sin(\theta)$ Equation of motion $(x - 77.72)^{2} + (y - 106.48)^{2}$ Circular manifold

 $\omega_1^2 + 0.32\omega_2^2 - 124.13\cos(\theta_1) - 46.82\cos(\theta_2) + 0.82\omega_1\omega_2\cos(\theta_1 - \theta_2)$ Hamiltonian

Problems with Evolutionary Search

- · does not scale well to
 - high dimensional problems
 - more complex expressions
 - takes long to get all constants right

Short Break

Getty Images

Differentiable Architecture for Equation Learning

Data: $\{(x_1, y_1), (x_2, y_2), \dots\}$

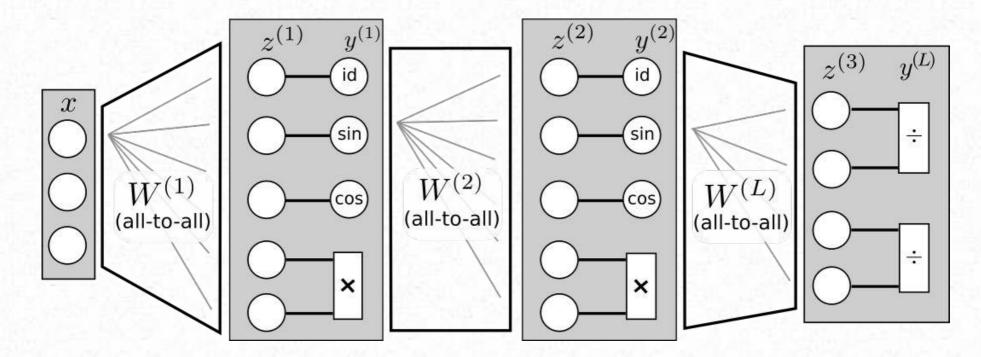
Assumption: y = f(x) + noise f is in the model class

Subham S Sahoo Google, India

Christoph Lamper IST Austria

Differentiable Architecture for Equation Learning

Data: $\{(x_1, y_1), (x_2, y_2), \dots\}$ Assumption: y = f(x) + noise f is in the model class



Replace standard units of NN

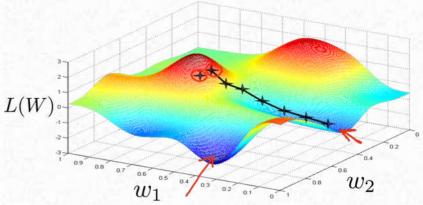
by id, sin, cos, multiplication and division.

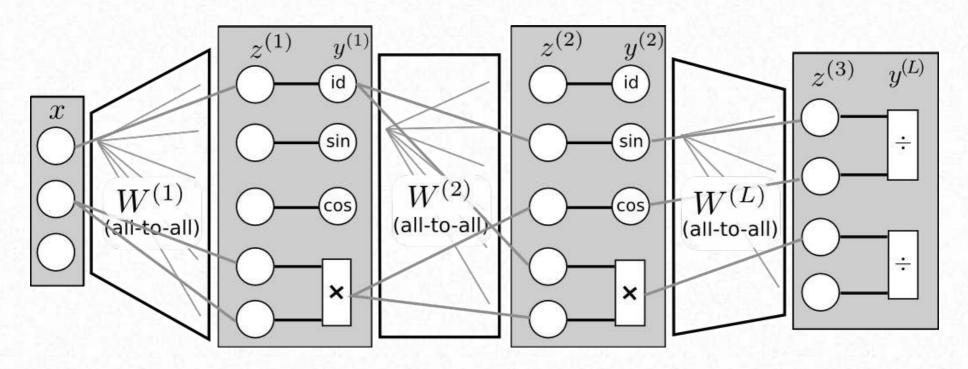
Regression with sparsity regularization

$$L = \sum_{i=1}^{n} |f(x_i, W) - y_i|^2 + \lambda |W|_1$$

Training by gradient descent

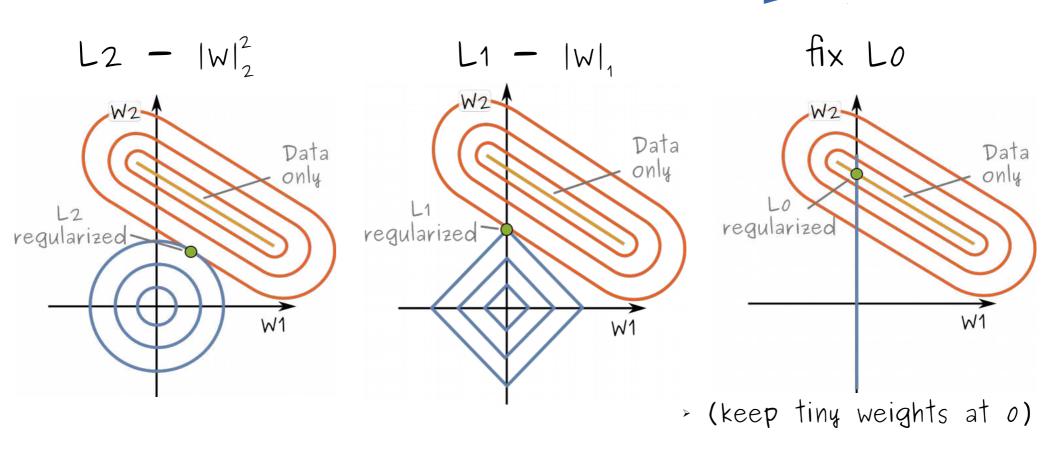
$$\Delta W \propto -\frac{\partial L}{\partial W}$$





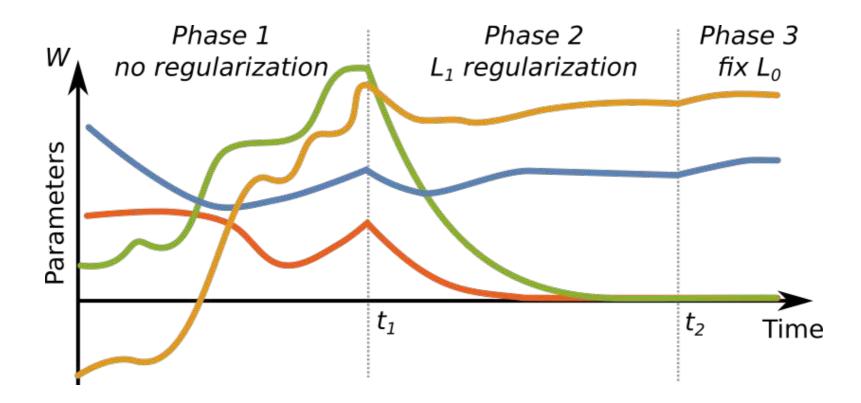
Regularization Phases

» Want: sparse solution



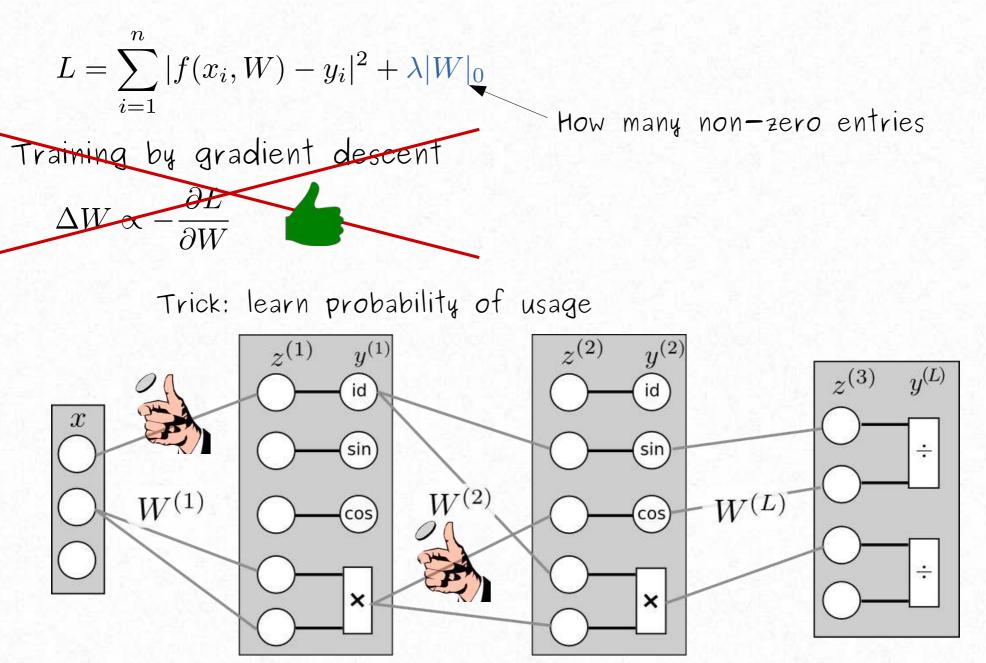
» sparse solution without tradeoff

Regularization Phases



Martius, Lampert arXiv 2016

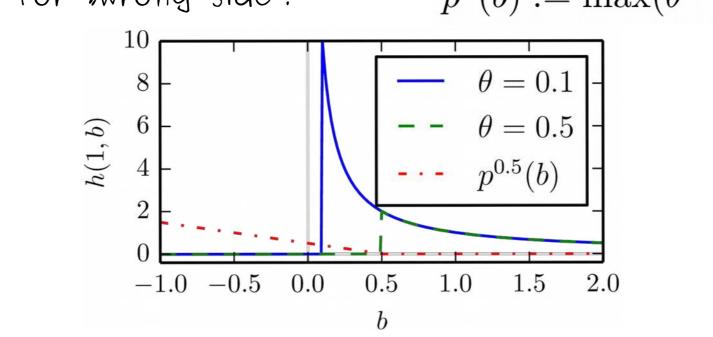
Directly optimize for sparsity \rightarrow Lo norm



Bayesian compression/learned dropout ICLR 2018, ArXiv: 1712.01312 by Christos Louizos, Max Welling, Diederik P. Kingma

Treating Singular Units

Regularized version of a/b: $h^{\theta}(a,b) := \begin{cases} \frac{a}{b} & \text{if } b > \theta \\ 0 & \text{otherwise} \end{cases}$ Penalty for "wrong side": $p^{\theta}(b) := \max(\theta - b, 0)$

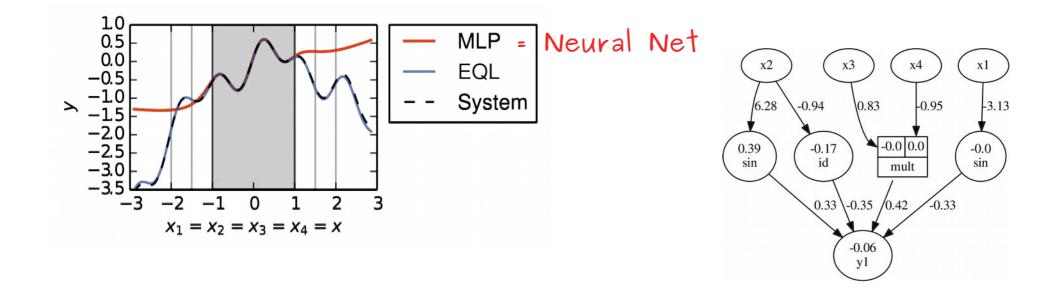


Better: Learn threshold: $\theta = \log(1 + e^{\alpha}) > 0$ works for: log, 1/a, sqrt (singular derivative)

see Werner et al. arXiv 2105.06331

Function learning and extrapolation

Toy example: $y = \frac{1}{3}(\sin(\pi x_1) + \sin(2\pi x_2 + \pi/8) + x_2 - x_3 x_4) + \xi$



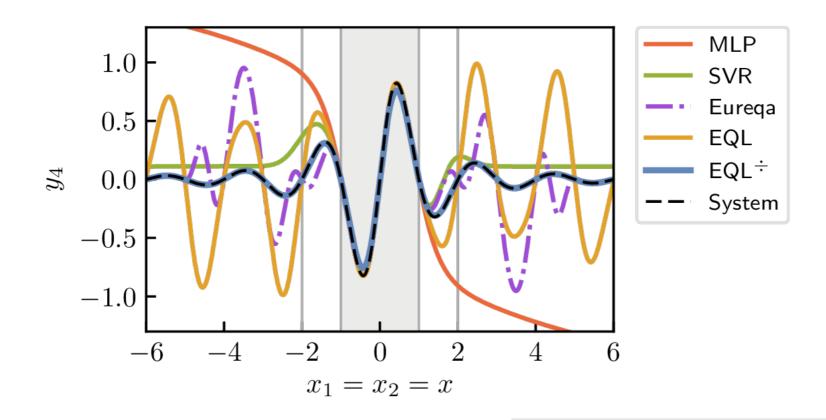
Learned formula: $-0.33\sin(-3.13x_1) + 0.33\sin(6.28x_2 + 0.39) + 0.33x_2 - 0.056 - 0.33x_3x_4$

Function learning and extrapolation

. .

Toy example 2:

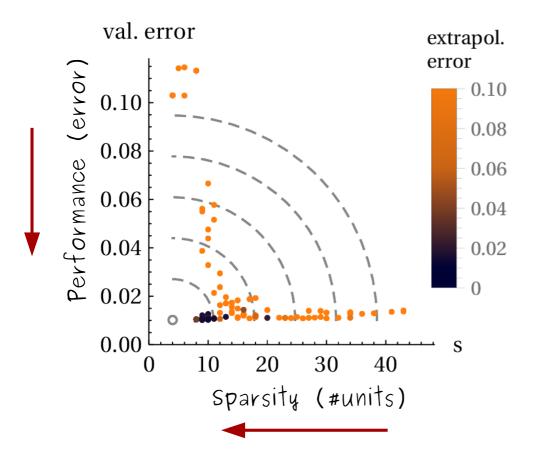
$$y = \frac{\sin(\pi x_1)}{(x_2^2 + 1)}$$



Model Selection

Occams Razor: Most simple formula is most likely the right one. But too simple can also be wrong:

Multiobjective: Simple and good performance



different from standard ML!

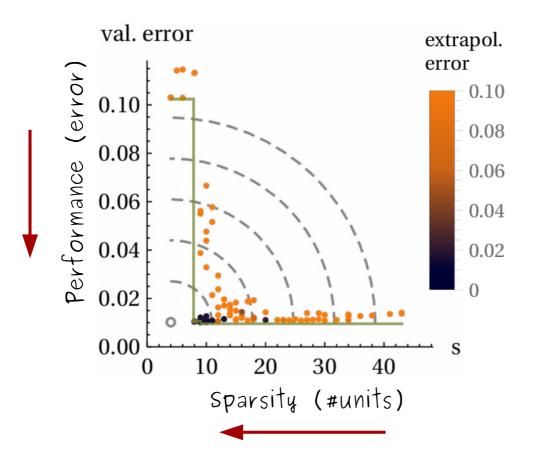
source of Interpretability

$$\arg\min_{\phi} [\tilde{v}(\phi)^2 + \tilde{s}(\phi)^2]$$
 normalized values

Model Selection

Occams Razor: Most simple formula is most likely the right one. But too simple can also be wrong:

Multiobjective: Simple and good performance

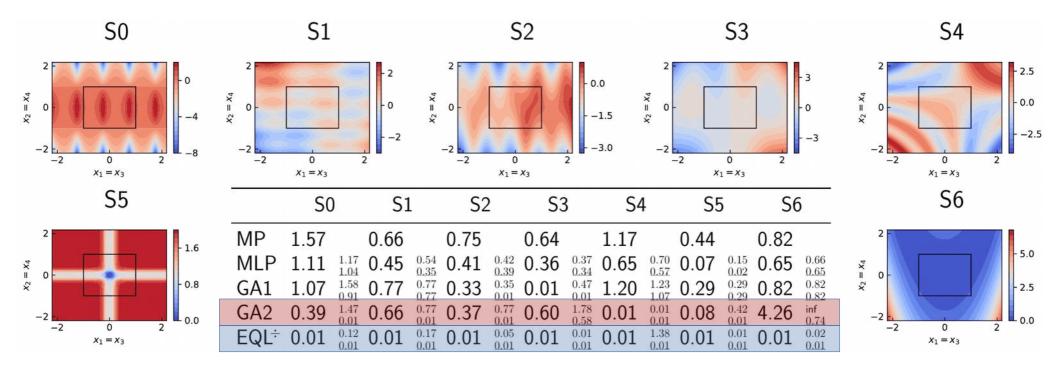


Remark:

jump in Pareto front not always as obvious

Sahoo, Lampert, Martius, ICML 2018

Some Results Analytical Functions



So
$$y = (1 - x_2^2)/(\sin(2\pi x_1) + 1.5)$$

S1
$$y = [\sin(\pi x_1) + \sin(2\pi x_2 + \pi/8) + x_2 - x_3 x_4]/3$$

S2
$$y = \left[\sin(\pi x_1) + x_2\cos(2\pi x_1 + \pi/4) + x_3 - x_4^2\right]/3$$

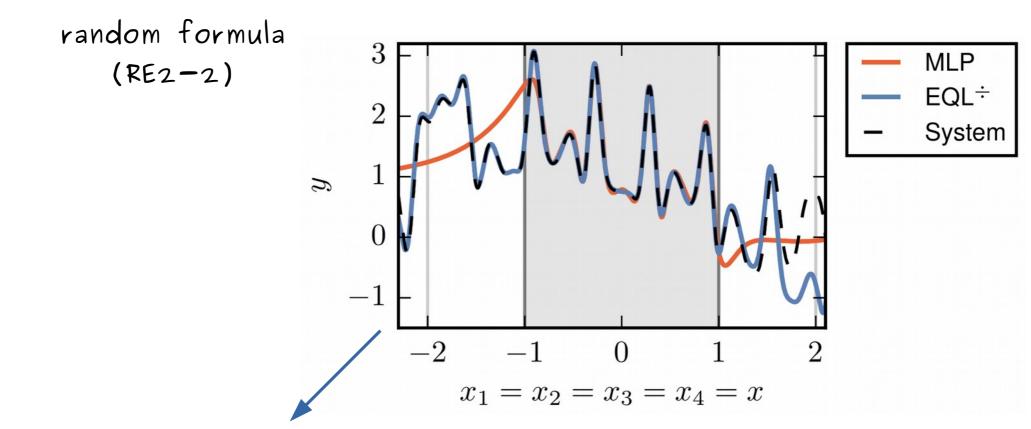
S3
$$y = [(1 + x_2)\sin(\pi x_1) + x_2x_3x_4]/3$$

S4*
$$y = (3.0375 x_1 x_2 + 5.5 \sin (9/4 (x_1 - 2/3)(x_2 - 2/3)))/5$$

S5* $y = \frac{(5x_1)^4}{(5x_1)^4 + 1} + \frac{(5x_2)^4}{(5x_2)^4 + 1}$
S6* $y = ((1 - x_1)^2 + (1 - x_3)^2 + 100(x_2 - x_1^2)^2 + 100(x_4 - x_3^2)^2)/1500$

Werner, Junginger, Hennig, GM. arXiv:2105.06331, 2021

Random formulas



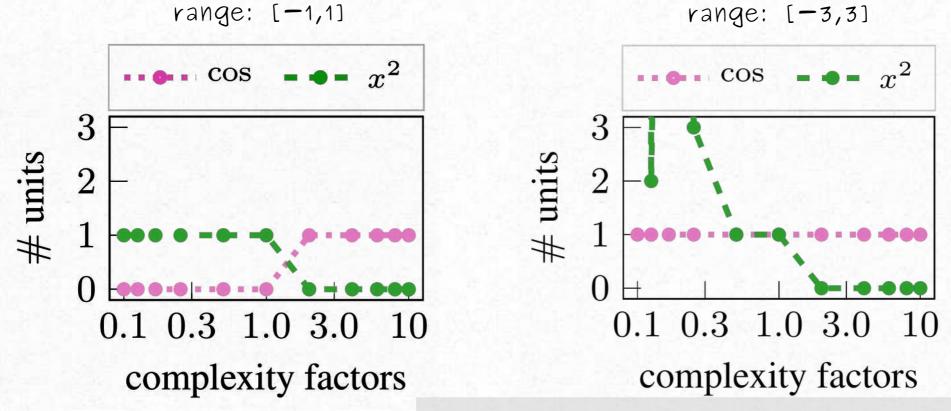
	RE2-1	RE2-2	RE2-3 X	RE2-4	RE3-1 🗡	RE3-2	RE3-3	RE3-4
$EQL^{\div} V^{int\&ex}$	$0.02 {}^{\scriptscriptstyle 0.02}_{\scriptscriptstyle 0.02}$	$0.04 \ {}^{\scriptscriptstyle 0.11}_{\scriptscriptstyle 0.03}$	$0.52 \stackrel{\scriptscriptstyle 0.82}{_{\scriptstyle 0.48}}$	$0.01 \stackrel{\scriptscriptstyle 0.01}{\scriptscriptstyle 0.01}$	$0.46 \ {}^{\scriptscriptstyle 0.55}_{\scriptscriptstyle 0.28}$	0.02 $\substack{0.06\\0.01}$	$0.01 \stackrel{\scriptscriptstyle 0.01}{\scriptstyle\scriptscriptstyle 0.01}$	$0.03 {}^{\scriptscriptstyle 0.52}_{\scriptscriptstyle 0.02}$
$EQL^{\div} V^{int}$ -S	$0.27 {}^{0.39}_{0.02}$	$0.14 \stackrel{\scriptstyle 0.14}{\scriptstyle 0.14}$	$0.76_{0.55}^{2.05}$	$0.01 \stackrel{\scriptstyle 0.01}{\scriptstyle 0.01}$	$0.51 {}^{\scriptscriptstyle 1.23}_{\scriptscriptstyle 0.31}$	$0.08 \stackrel{4.65}{_{0.04}}$	$0.01 \stackrel{\scriptstyle 0.01}{\scriptstyle 0.01}$	$0.03 {}^{1.64}_{0.02}$
MLP V ^{int&ex}	$1.54 \stackrel{\scriptscriptstyle 1.66}{\scriptscriptstyle 1.43}$	$1.04_{0.96}^{1.09}$	$0.90 {}^{0.91}_{0.87}$	$0.95 \ {}^{1.12}_{0.86}$	$1.04_{0.84}^{1.36}$	$1.85_{1.60}^{2.13}$	$0.52 {}^{\scriptscriptstyle 0.58}_{\scriptscriptstyle 0.40}$	$1.64 \stackrel{\scriptstyle 1.96}{\scriptstyle 1.34}$
MLP V ^{int}	$1.60_{-1.44}^{+1.66}$	$1.05 \ {}^{\scriptscriptstyle 1.10}_{\scriptscriptstyle 1.01}$	$1.47 \stackrel{\scriptstyle 1.65}{\scriptstyle 1.10}$	$0.99 {}^{\scriptscriptstyle 1.16}_{\scriptscriptstyle 0.86}$	$1.31_{-1.07}^{+1.59}$	$2.03_{1.65}^{2.24}$	$1.16_{0.73}^{2.02}$	$1.89_{1.61}^{2.12}$
SVR V ^{int&ex}	1.15	1.09	0.59	1.51	0.96	1.81	0.37	1.23
SVR V ^{int}	1.20	2.12	17.72	13.89	11.79	11.28	0.37	17.67
Const 0	6.73	2.57	0.50	5.36	1.65	72.26	17.67	3.15
	-							

- which terms are more likely
 e.g.: cos > x², div > exp
- what about exp, sqrt, log? needs treatment for gradient optimization
- which combinations are not allowed
 e.g.: cos(cos(.)), exp(exp(.))
- preinitialize network (unexplored)

Informed EQL

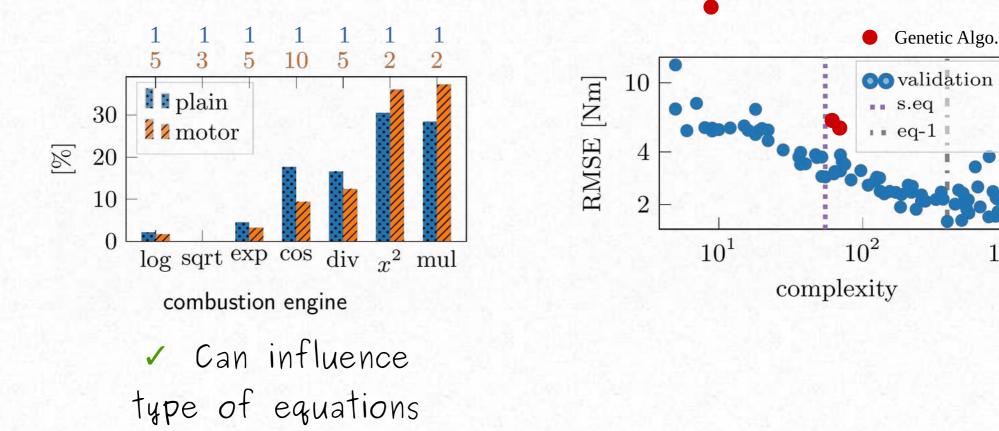
Werner, Junginger, Hennig, GM. arXiv:2105.06331, 2021

- which terms are more likely define complexity per base function: e.g. $w_{cos} = 3$, $w_{*} = 1$
 - weight regularization with $\ensuremath{\mathsf{w}_{\mathsf{x}}}$
 - use w_{x} in complexity for model selection
- Example: $y = 8\cos(0.5x) 4$



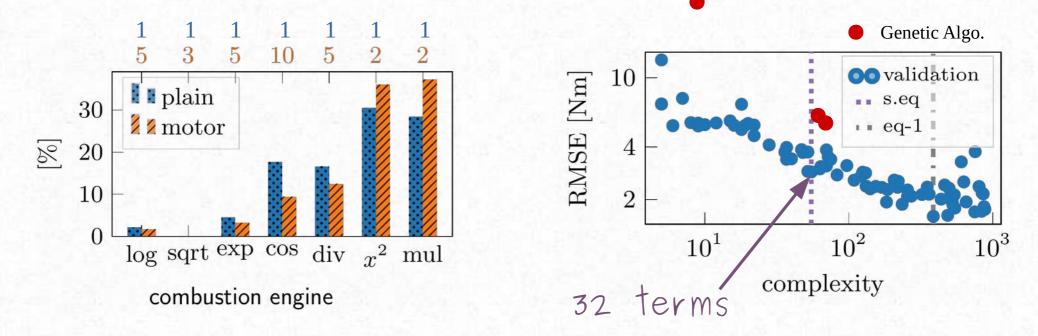
Werner, Junginger, Hennig, GM. arXiv:2105.06331, 2021

• example: combustion engine torque prediction



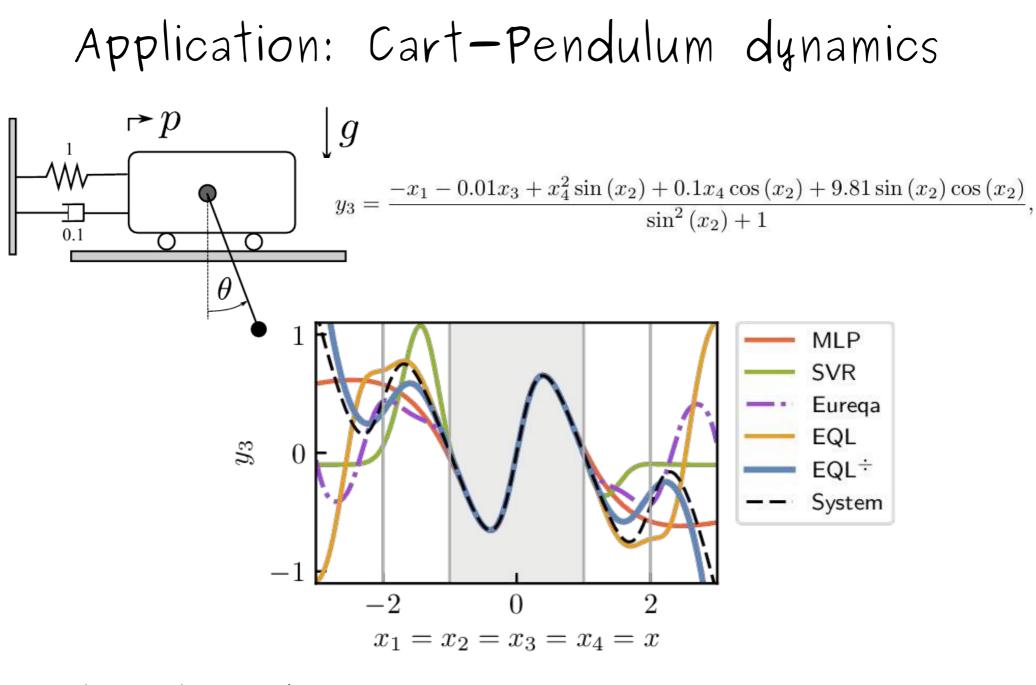
 10^{3}

• example: combustion engine torque prediction



 $y = -0.3x_1 + 2.32x_2 + 0.27x_3 + 0.6c_2 + 0.3c_3 + 0.35\cos(1.12x_3 + 1.42c_2 + 0.59c_3 - 0.23) + 0.51$ substitutions: $c_1 = (0.05 - 0.69x_1)(1.0x_1 + 0.64)$ $c_2 = (-0.95x_2 - 0.69)(-1.06x_3 + 0.96(-0.21x_1 + 0.66x_3) + 0.96x_3 + 0.96(-0.21x_1 + 0.66x_3) + 0.96x_3 + 0.96x_3 + 0.96(-0.21x_1 + 0.66x_3) + 0.96x_3 + 0.96x_3 + 0.96(-0.21x_1 + 0.66x_3) + 0.9x_3 + 0.9x_3$

Werner, Junginger, Hennig, GM. arXiv:2105.06331, 2021

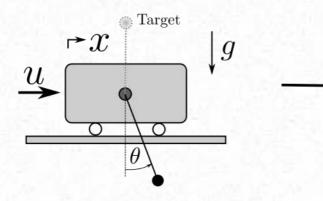


Able to learn dynamics equations

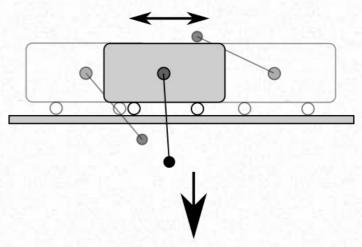
Sahoo, Lampert, Martius, ICML 2018

Learning Cart-Pole swingup

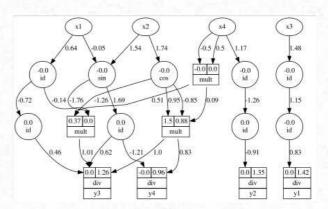
Robot



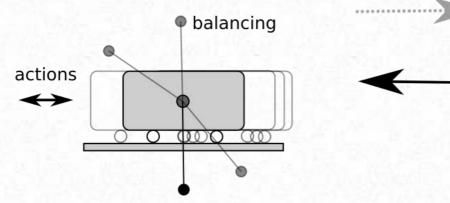
random movements



Learning Equation



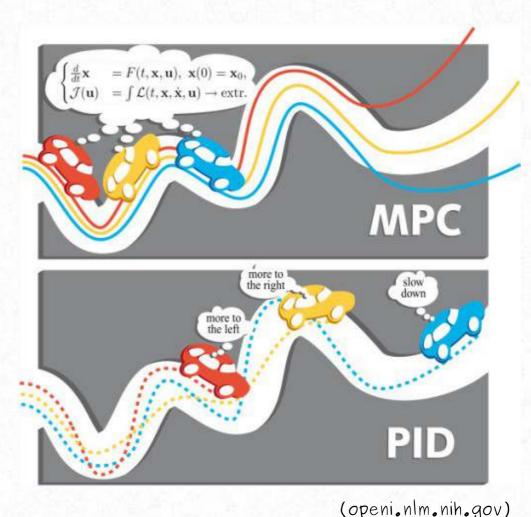
Sahoo, Lampert, Martius, ICML 2018



Model predictive Control, random shooting method

Model Predictive Control

- · plan ahead with model
- take best action
- replan



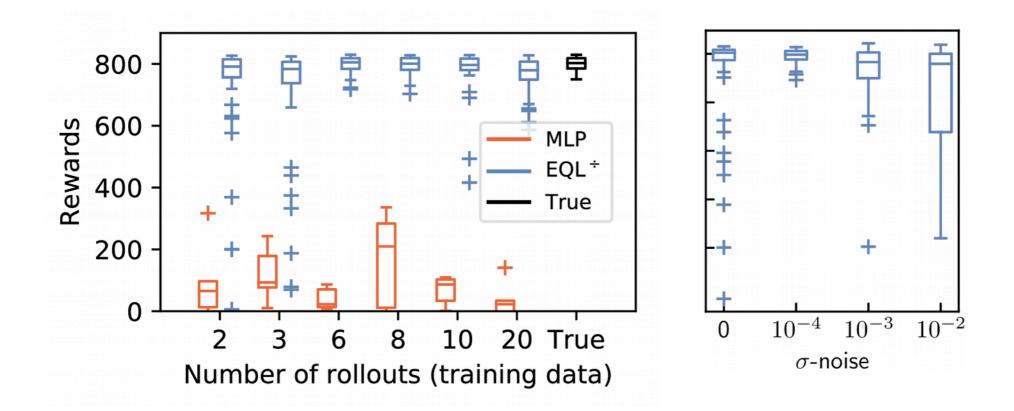
here: planning = many random rollouts

Learning Equations for Extrapolation and Control by S.S.Sahoo, C.H.Lampert and G.Martius, ICML 2018

Training 1 Random rollout Validation 1 Random rollout (stronger actions)

Sahoo, Lampert, Martius, ICML 2018

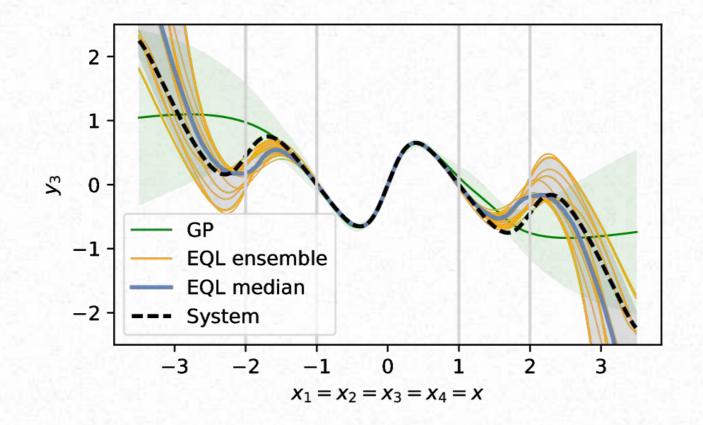
Cart-pole Swingup



Sahoo, Lampert, Martius, ICML 2018

Uncertainty estimates

- · get an estimate of uncertainty
 - ensemble of discrete hypotheses

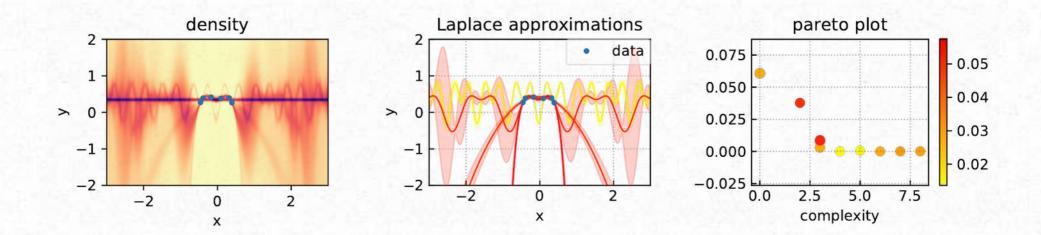


Matthias Werner

work in progress with Matthias Werner

Uncertainty estimates

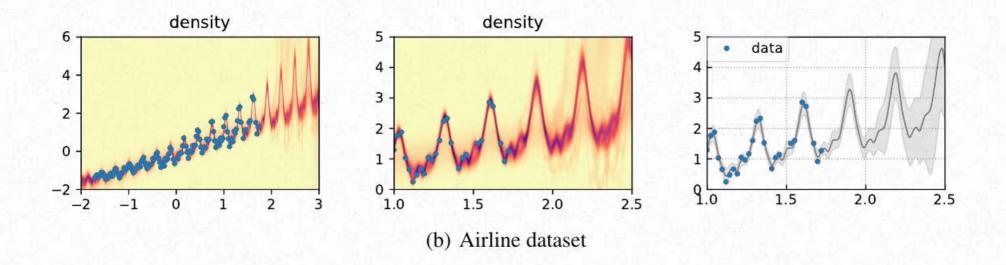
- · get an estimate of uncertainty
 - ensemble of discrete hypotheses
 - Laplace approximation of each solution (how certain are the parameters estimated)



work in progress with Matthias Werner

Uncertainty estimates

- · get an estimate of uncertainty
 - ensemble of discrete hypotheses
 - Laplace approximation of each solution (how certain are the parameters estimated)



work in progress with Matthias Werner

Other approaches:

- AI Feynman Udrescu & Tegmark, Science Advances 2020
 - Uses physics knowledge
 - physical units
 - symmetries
- DSL (Deep Symbolic Regression)
 Petersen et al, ICLR 2021
 - Uses Deep RL to guide the search
- Deterministic search: Prio. Grammer Enumeration
 Worm, Chiu. GECCO 2013, Kronberger et.al. 2018+

Amortizing Data:

- so far: regression/search starts from scratch
- can we train a network to produce good candidate guesses, based on data?

Neural Symbolic Regression that Scales @ICML 2021

Luca Biggio^{*12} Tommaso Bendinelli^{*2} Alexander Neitz³ Aurelien Lucchi¹ Giambattista Parascandolo¹³

NesymRes

NesymRes

Approach:

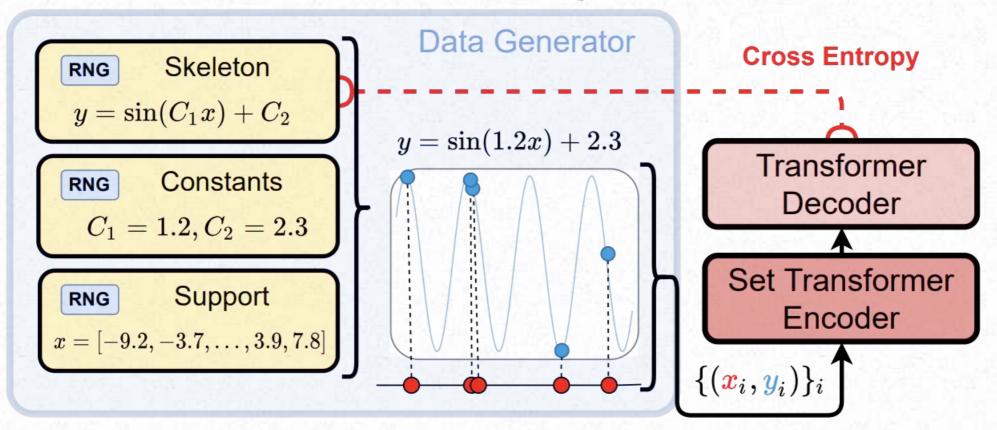
- · Generate massive amounts data
- Pre-train end-to-end a big transformer
 to do exactly what we want to do
- Sample from Transformer
 - Apply beam-search
 - Fine-tune

NesymRes

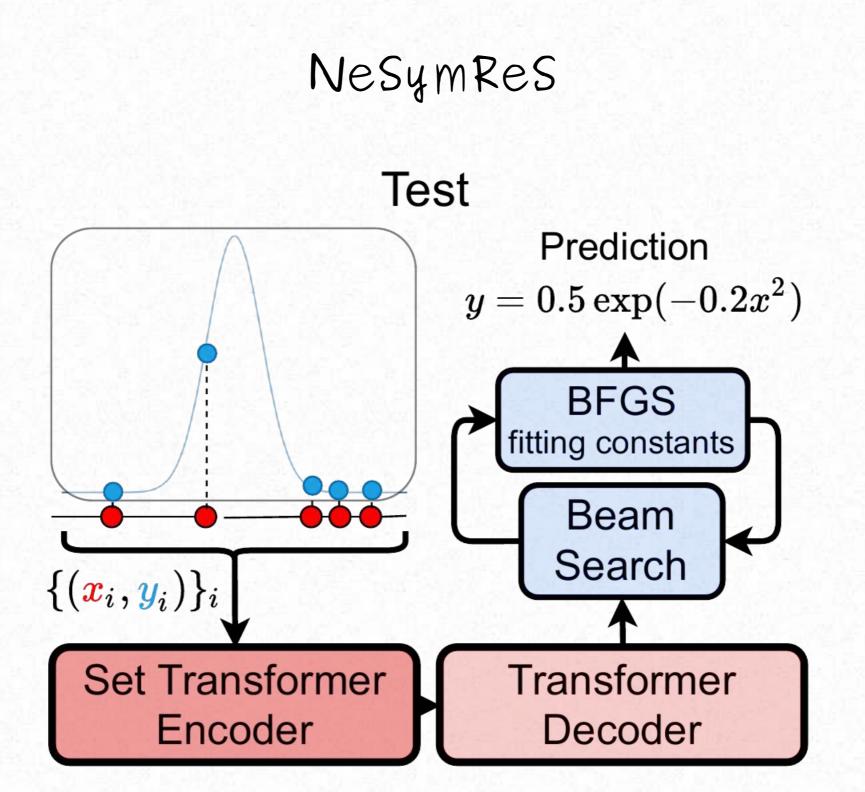
Pre-Training Data Generator Skeleton RNG $y = \sin(C_1 x) + C_2$ $y = \sin(1.2x) + 2.3$ Constants RNG $C_1 = 1.2, C_2 = 2.3$ Support RNG $x = [-9.2, -3.7, \dots, 3.9, 7.8]$

NesymRes

Pre-Training



learn to guess the right functional form without constants



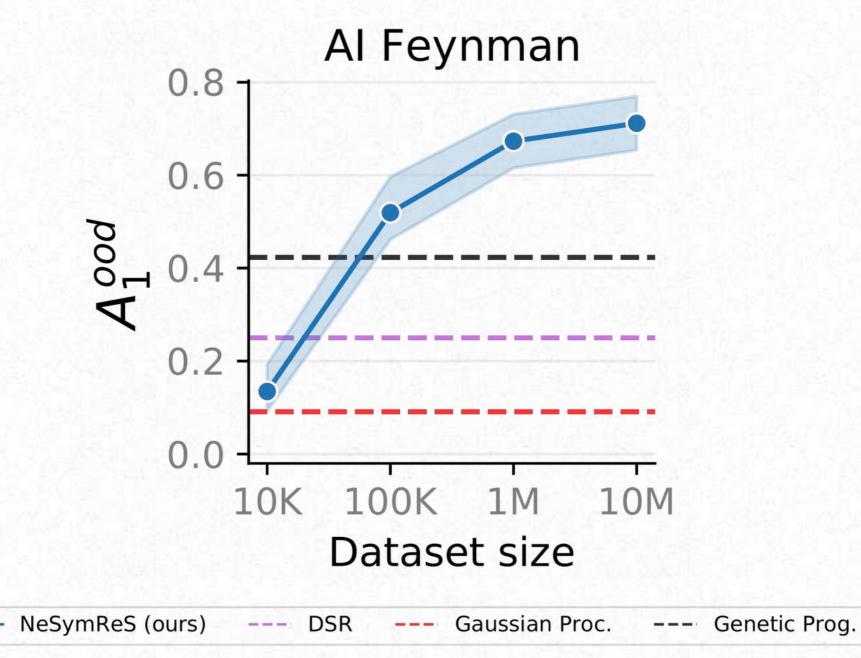
How much pretraining do we need?

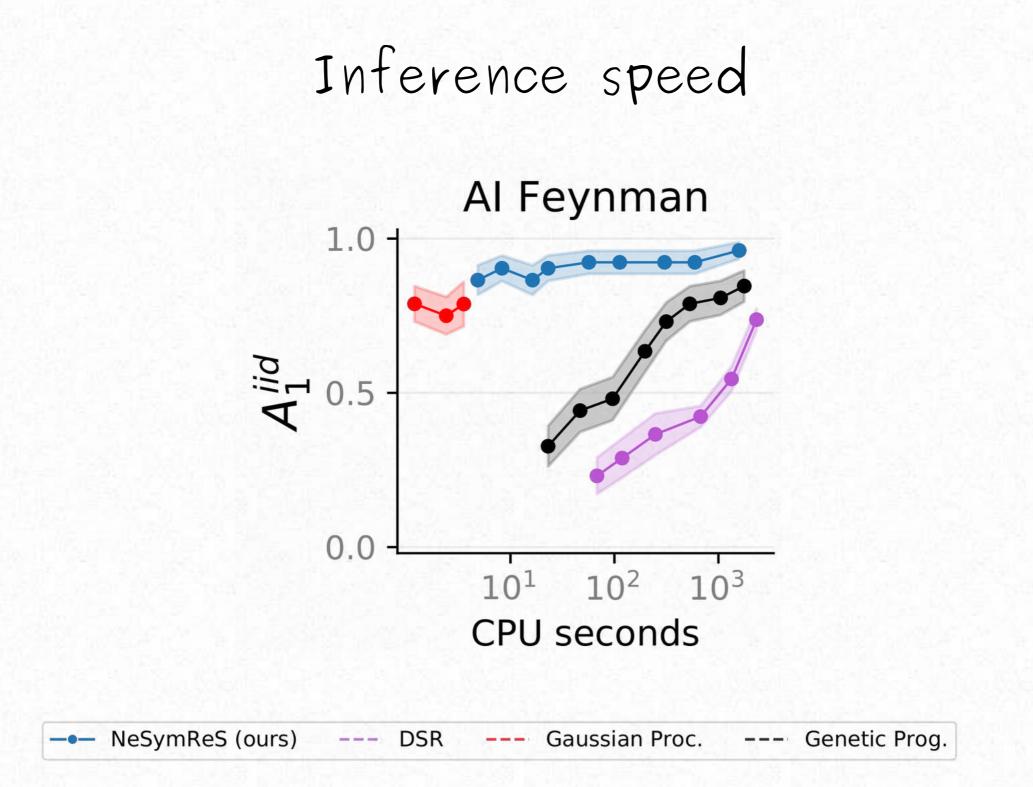
AI Feynman: Equations/Dataset

 $\sqrt{-x_1 + \frac{x_2 x_3}{x_1}}$ $\sin(4.84x_3(2.3x_1-3.494x_2+1))$ $\sin(x_3) + \sin\left(\frac{x_3}{x_1 - x_2}\right)$ $x_1 (2.683x_1 + x_2 \cos(x_3)) + 1$ $4.631\sin\left(4.419\sin\left(\frac{x_2x_3}{x_1^2}\right)\right)$ $3.874x_3 + 4.12 - \frac{1}{x_1 + 4.322x_2x_3}$ $\frac{1.858x_1x_3}{-x_1+x_2} - 3.661x_3$ $2.846x_2 + \sin(x_1^5 + 2.258x_3)$ $\frac{x_2+x_3+\frac{x_2-4.615}{x_2}}{x_1}$ $-x_3 + \frac{0.221(-x_1+x_2)}{\log(x_2)} - 1$ $(1.261x_1 + 3.29\cos(1))\log(4.169x_2)$

 $\frac{x_3 + \frac{3.797 \sin{(x_1)}}{x_2}}{x_2}$ $x_1 - 4.843x_2x_3 + x_2 + \cos(x_3)$ $\cos\left(x_1 + 1.504x_2 + (x_2 + x_3)^2\right)$ $x_1 \left(-4.641 x_1 + \cos^2\left(4.959 \sqrt{x_2}\right)\right)$ $x_2\left(x_2-rac{-x_1-1}{x_2}
ight)$ $4.47x_1 + 1.193\cos\left(1 + \frac{1}{x_2}\right)$ $3.63x_1\cos\left(1.427x_2^3+x_2\right)$ $-x_1(1.196x_1 + \sin(x_1 + x_2))$ $x_3 + \frac{x_3}{x_1 + 2.318x_2 + x_3}$ $x_1 - rac{7.74\sqrt{0.383x_1 + x_2}}{x_2}$ $1 + \frac{0.221 \tan (3.972 x_2)}{x_2 (-3.549 x_1 + x_2)}$

How much pretraining do we need?





Comparison

	Easy to implement	Different iable	Pro	Cons	Domain knowledge
Genetic Algorithm [1]	√ ?	×	easy to implement	constants are hard, only small equations	base-functions + complexity
AI Feynman [2]	×	×	finds very plausible eqns.	restricted to physics?	physics (units etc)
RL-based search (DSR) [3]	×	×	faster than GAs	constants are hard	base-functions + complexity
Transformer (NeSymReS) [4]	×/ ✓	0	fast, accurate	max # variables little probl. data	pretraining, base- functions
Sparse regression of Library (SINDy) [5]	1	0	fast large systems	no function composition	library of blocks
Deep Network EQL / iEQL [6,7,8]	0	√	large systems (many DOF)	complicated expressions? slow	base-functions + complexity

Schmidt, Lipson. Distilling Free-Form Natural Laws from Experimental Data. Science, 2009
 Udrescu, Tegmark, AI Feynman: A physics-inspired method for symbolic regression, Science Advances, 2020

[3] Petersen et al. Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients. ICLR 2021

[4] Biggio et al. Neural Symbolic Regression that Scales. ArXiv 2106.06427, 2021

[5] Brunton, Proctor, Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. PNAS 2016

[6] Martius, Lampert, ArXiv 1610.02995, 2016

[7]Sahoo, Lampert, Martius. Learning Equations for Extrapolation and Control. ICML 2018

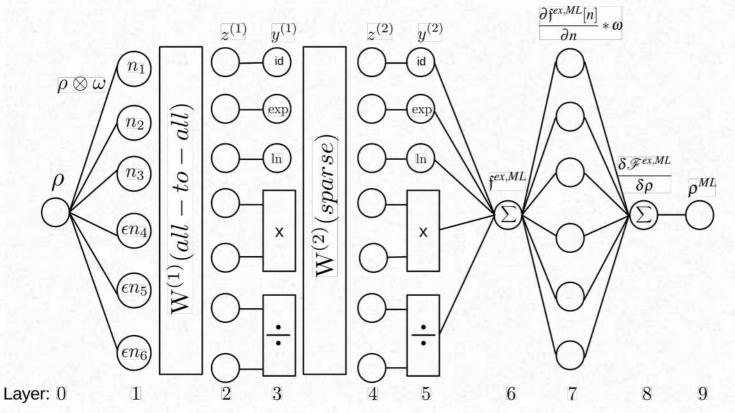
[8] Werner, Junginger, Hennig, Martius. Informed Equation Learning. ArXiv 2105.06331, 2021

Why is differentiability relevant

- allows to put the Symb. Regression module inside of deep architecture
- e.g.: Vision input → model object movement

Application to Physics

Find analytical expression of the classical free energy functional of simple fluids



Joined project with Martin Oettel

· Promising direction for understanding relevant fluids

Lin, GM, Oettel. JCP 2020

Application to Physics

Find analytical expression of the classical free energy functional of simple fluids

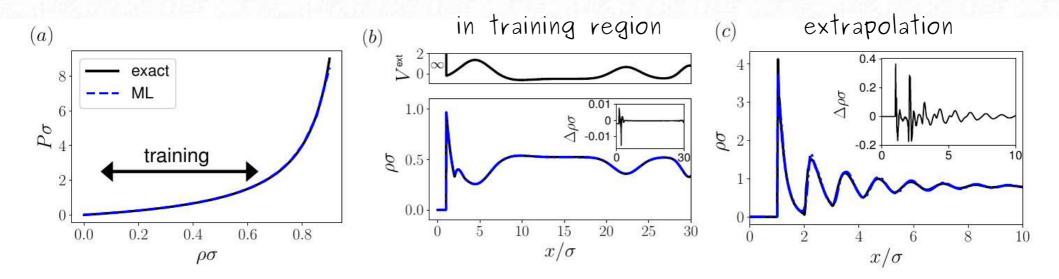


FIG. 2: FEQL results for hard rods. Dark solid lines are exact solutions from \mathscr{F}^{HR} and blue dashed lines are ML results. (a) eos, $P(\rho)$. (b) density profile for $\rho_0 = 0.49$ inside the training region but V^{ext} not in the training data. (c) density profile at hard wall for $\rho_0 = 0.80$ outside the training region. Insets in (b) and (c) show $\Delta \rho = \rho^{\text{exact}} - \rho^{\text{ML}}$.

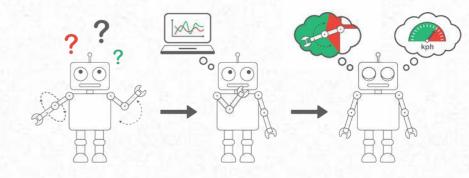
It works

Joined project with Martin Oettel

· Promising direction for understanding relevant fluids

Lin, GM, Oettel. JCP 2020

Summary



- » Symbolic regression
 - » find smallest fitting equation/formula
 - > mimics model discovery
 - » with domain knowledge can lead to great out-of-distribution generalization
- » Many methods by now:
 - > discrete search (GA's, DSL...)
 - » differentiable methods (EQL)
 - > neurally guided search (NesymRes)