
Constantinos (a.k.a. “Costis”) Daskalakis

EECS & CSAIL, MIT

Equilibrium Computation and Machine Learning

Stratis Skoulakis (SUTD) Manolis Zampetakis (UC Berkeley)Noah Golowich (MIT)Max Fishelson (MIT)



A Motivating Question

vs

How is it that ML models beat humans in 
Go and Poker, but can’t enter highways?



Single-Agent Optimization

Exciting Progress in 

Deep Learning
speech/image recognition 

text generation

translation

…
(+ models, learning objectives

hardware, data, …)

≈
min
!
𝑓(𝑥)

𝑓: non-convex
Empirical Finding: Gradient 

Descent (GD) and its variants 

discover local minima which 

generalize well

Now:

Practical Experience: GD vs GD (vs GD…)

have a hard time converging, let alone to 

something meaningful

How deep (no pun intended) is this issue?

Equilibrium Problems in Machine Learning

Equilibrium Computation

Past Decade:



Generative Adversarial Nets (GANs) [Goodfellow et al’14]:

How? Set up a zero-game between a player tuning the parameters 𝑥 of a  “Generator” DNN 

and a player tuning the parameters 𝑦 of a “Discriminator” DNN:

𝑍 ∼ 𝒩(0, 𝐼) 𝐺! ⋅ ∼ 𝑃"#$%&%'$"#(

𝑍!, 𝑍", … , 𝑍# ∼ 𝑁(0, 𝐼)
Simple 

Randomness

Generator: DNN w/ parameters 𝑥

Discriminator: DNN w/ parameters 𝑦

Hallucinated Images  

(from generator)

Real Images  

(from training set)

Real or Hallucinated

… …

min
!
max
*

𝔼+∼-!"#$ 𝐷* 𝑍 − 𝔼+∼.(0,2) 𝐷* 𝐺!(𝑍)
Wassertsein GAN [Arjovsky-Chintala-Bottou’17]

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!
𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!

Gradient Descent-Ascent (GDA) Dynamics:

typically 𝑓 is not convex/concave; and 𝑥, 𝑦 multidimensionalmin
!
max
"
𝑓(𝑥, 𝑦)

e.g. GANs, robust classification, 

2-agent RL

Training Oscillations and/or Garbage Solutions:
already in two-agent min-max settings



- GAN training on MNIST:

- GAN training on mixture of Gaussians:

Target:

Target:

pictures from [Metz et al ICLR’17]

Training Oscillations and/or Garbage Solutions:
already in two-agent min-max settings

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!
𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!

Gradient Descent-Ascent (GDA) Dynamics:

typically 𝑓 is not convex/concave; and 𝑥, 𝑦 multidimensionalmin
!
max
"
𝑓(𝑥, 𝑦)

e.g. GANs, robust classification, 

2-agent RL



• True distribution: isotropic Normal distribution, namely  𝑋 ∼ 𝒩 3
4
, 𝐼!×!

• Generator architecture: 𝐺𝜽 𝑍 = 𝑍 + 𝜽 (adds input 𝑍 to internal params)

• Discriminator architecture: 𝐷𝒘 ⋅ = 𝒘,⋅ (linear projection)

• Wasserstein-GAN objective: min
𝜽
max
𝒘

𝔼# 𝐷𝒘 𝑋 − 𝔼$ 𝐷𝒘 𝐺𝜽(𝑍)

= min
𝜽
max
𝒘

𝒘% ⋅
3

4
− 𝜽

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR’18]

convex-concave 

function

𝑍, 𝜃,𝑤: 2-dimensional

Gradient Descent Dynamics

Training Oscillations: 

even for Gaussian data/bilinear objectives

(infinite samples)



from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR’18]

Training Oscillations: 

persistence for variants of Gradient Descent/Ascent 



Training Oscillations:

the simplest oscillating min-max example

min
!
max
"
𝑓(𝑥, 𝑦)

: initialization 

: min-max equilibrium

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝑦!
𝑦!"# = 𝑦! + 𝜂 ⋅ 𝑥!

0

𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑦

0

1-1

-1

1

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!
𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!

Gradient Descent-Ascent (GDA) Dynamics:



• Training oscillations/garbage solutions arise: 

• even in two-agent, min-max settings

• even when the objective is convex-concave, low-dimensional

• even when the objective is perfectly known

What gives?



• Training oscillations/garbage solutions arise: 

• even in two-agent, min-max settings

• even when the objective is convex-concave, low-dimensional

• even when the objective is perfectly known

• So good luck when:

• the objective needs to be learned besides optimized

• the objective is nonconvex-nonconcave, high-dimensional

• the setting is multi-agent, multi-objective

What gives?



Broad Focus: Equilibrium Learning

…

action: 𝑥* ∈ ℝ
+!

goal: min 𝑓* 𝑥*, … , 𝑥,

action: 𝑥- ∈ ℝ
+"

goal: min 𝑓- 𝑥*, … , 𝑥,

action: 𝑥, ∈ ℝ
+#

goal: min 𝑓, 𝑥*, … , 𝑥,

Sources of tension:

Ø 𝑥%& may be imposing constraints on feasible 𝑥&
Ø each 𝑓& depends on the whole �⃗�, yet

§ 𝑓*, … , 𝑓, may be misaligned

§ players may be uncoordinated in choosing actions and may have partial observability of 

actions/payoffs/information of others

Game theory: 

Ø offers solution concepts, such as Nash or correlated equilibrium, to predict what might 

reasonably happen

Ø but is GD or variants going to get there?



Broad Focus: Equilibrium Learning

Important consideration:  is 𝑓& convex in 𝑥& (convex game) or not (nonconvex game) ?

Ø without convexity even equilibrium existence is at risk!

Ø even with convexity, Nash equilibrium is intractable [Daskalakis-Goldberg-Papadimitriou’06, Chen-

Deng’06] so consider alternatives such as (coarse) correlated equilibrium / minimizing regret / …

…

action: 𝑥* ∈ ℝ
+!

goal: min 𝑓* 𝑥*, … , 𝑥,

action: 𝑥- ∈ ℝ
+"

goal: min 𝑓- 𝑥*, … , 𝑥,

action: 𝑥, ∈ ℝ
+#

goal: min 𝑓, 𝑥*, … , 𝑥,

Main Question: When each agent uses Gradient Descent (or some other learning 

dynamics), will the strategy profile converge to some Nash, correlated equilibrium, or 

other meaningful solution concept?



min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

I will view the game as simultaneous

𝑓 𝑥, 𝑦

Main Focus: Min-Max Optimization

Ø 𝑓: Lipschitz, 𝐿-smooth (i.e. ∇𝑓 is 𝐿-Lipschitz) 

Ø constraint set 𝑆: convex, compact

sequential games are also important in GT and ML 

and no harder computationally 

c.f. [Jin-Netrapali-Jordan ICML’20] [Mangoubi-Vishnoi STOC’21]



Ø 𝑓: Lipschitz, 𝐿-smooth (i.e. ∇𝑓 is 𝐿-Lipschitz) 

Ø constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

vs

𝑓 𝑥, 𝑦

Main Focus: Minimization      vs     Min-Max Optimization

(I view the game as simultaneous)



Ø 𝑓: convex, 𝐿-smooth 

Ø constraint set: convex, compact

Ø 𝑓: convex in 𝒙& concave in 𝒚, 𝐿-smooth

Ø constraint set: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

the classical setting [von Neumann’28, Dantzig’48,…]
𝑓 𝑥, 𝑦

Minimization      vs     Min-Max Optimization



Ø 𝑓: convex, 𝐿-smooth 

Ø constraint set: convex, compact

Ø 𝑓: convex in 𝒙& concave in 𝒚, 𝐿-smooth

Ø constraint set: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

Theorem [standard] 

First-order methods find approximate minima, in 

#steps/queries to 𝑓 or 𝛻𝑓 that are polynomial in 

1/𝜀, 𝐿, diameter of 𝑆.

Theorem [standard] 

First-order methods find approximate min-max 

equilibria, in #steps/queries to 𝑓 or 𝛻𝑓 that are 

polynomial in 1/𝜀, 𝐿, diameter of 𝑆.

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝑆 𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

∀𝑥 s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝑓 𝑥, 𝑦

the classical setting [von Neumann’28, Dantzig’48,…]

Minimization      vs     Min-Max Optimization



Ø 𝑓: convex, 𝐿-smooth 

Ø constraint set: convex, compact

Ø 𝑓: convex in 𝒙& concave in 𝒚, 𝐿-smooth

Ø constraint set: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

Theorem [standard] 

First-order methods find approximate minima, in 

#steps/queries to 𝑓 or 𝛻𝑓 that are polynomial in 

1/𝜀, 𝐿, diameter of 𝑆.

Theorem [standard] 

First-order methods find approximate min-max 

equilibria, in #steps/queries to 𝑓 or 𝛻𝑓 that are 

polynomial in 1/𝜀, 𝐿, diameter of 𝑆.

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝑆 𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

∀𝑥 s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝑓 𝑥, 𝑦

the classical setting [von Neumann’28, Dantzig’48,…]

Minimization      vs     Min-Max Optimization

𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑦

Training oscillations of GDA here not due to 

computational intractability, but are feature of 

training method; can they be removed?



➢ 𝑓: Lipschitz,	𝐿-smooth	

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

?

the modern setting
𝑓 𝑥, 𝑦

Minimization      vs     Min-Max Optimization

(I view the game as simultaneous)



➢ 𝑓: Lipschitz,	𝐿-smooth	

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

it’s intractable (NP-hard) to find global optima
& global optima may not even exist in the RHS

but, how about local optima?

𝑓 𝑥, 𝑦

the modern setting

(I view the game as simultaneous)

Minimization      vs     Min-Max Optimization



➢ 𝑓: Lipschitz,	𝐿-smooth

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝐵' 𝑥
∗ ∩ 𝑆

Def: 𝜀, 𝛿 -local minimum Def: 𝜀, 𝛿 -local min-max equilibrium

𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

∀𝑥 ∈ 𝐵' 𝑥
∗ s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦 ∈ 𝐵' 𝑦

∗ s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝑓 𝑥, 𝑦

𝐵! 𝑥
∗ = 𝑥 s.t. 𝑥 − 𝑥∗ ≤ 𝛿

𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

the modern setting
Minimization      vs     Min-Max Optimization



➢ 𝑓: Lipschitz,	𝐿-smooth,	𝑓(𝑥) ∈ [0,1]

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝐵' 𝑥
∗ ∩ 𝑆

Def: 𝜀, 𝛿 -local minimum Def: 𝜀, 𝛿 -local min-max equilibrium

𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

∀𝑥 ∈ 𝐵' 𝑥
∗ s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦 ∈ 𝐵' 𝑦

∗ s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝑓 𝑥, 𝑦

𝐵! 𝑥
∗ = 𝑥 s.t. 𝑥 − 𝑥∗ ≤ 𝛿

𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

the modern setting
Minimization      vs     Min-Max Optimization



Theorem [folklore] 

If 𝛿 ≤ 2𝜀/𝐿 , first-order methods find 𝜀, 𝛿 -

local minima, in #steps/queries to 𝑓 or 𝛻𝑓 that 

are polynomial in 1/𝜀, smoothness of 𝑓.

➢ 𝑓: Lipschitz,	𝐿-smooth,	𝑓(𝑥) ∈ [0,1]

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝐵' 𝑥
∗ ∩ 𝑆

Def: 𝜀, 𝛿 -local minimum Def: 𝜀, 𝛿 -local min-max equilibrium

𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

∀𝑥 ∈ 𝐵' 𝑥
∗ s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦 ∈ 𝐵' 𝑦

∗ s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝑓 𝑥, 𝑦

𝐵! 𝑥
∗ = 𝑥 s.t. 𝑥 − 𝑥∗ ≤ 𝛿

𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

the modern setting
Minimization      vs     Min-Max Optimization



Theorem [folklore] 

If 𝛿 ≤ 2𝜀/𝐿 , first-order methods find 𝜀, 𝛿 -

local minima, in #steps/queries to 𝑓 or 𝛻𝑓 that 

are polynomial in 1/𝜀, smoothness of 𝑓.

➢ 𝑓: Lipschitz,	𝐿-smooth,	𝑓(𝑥) ∈ [0,1]

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝐵' 𝑥
∗ ∩ 𝑆

(for larger 𝛿 existence holds, but problem becomes NP-hard)

Def: 𝜀, 𝛿 -local minimum Def: 𝜀, 𝛿 -local min-max equilibrium

𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

∀𝑥 ∈ 𝐵' 𝑥
∗ s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦 ∈ 𝐵' 𝑦

∗ s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝑓 𝑥, 𝑦

𝐵! 𝑥
∗ = 𝑥 s.t. 𝑥 − 𝑥∗ ≤ 𝛿

𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

the modern setting
Minimization      vs     Min-Max Optimization



Theorem [folklore] 

If 𝛿 ≤ 2𝜀/𝐿 , first-order methods find 𝜀, 𝛿 -

local minima, in #steps/queries to 𝑓 or 𝛻𝑓 that 

are polynomial in 1/𝜀, smoothness of 𝑓.

➢ 𝑓: Lipschitz,	𝐿-smooth,	𝑓(𝑥) ∈ [0,1]

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝐵' 𝑥
∗ ∩ 𝑆

(for larger 𝛿 existence holds, but problem becomes NP-hard)

Def: 𝜀, 𝛿 -local minimum Def: 𝜀, 𝛿 -local min-max equilibrium

𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

exist for small enough 𝛿 ≤ 2𝜀/𝐿

∀𝑥 ∈ 𝐵' 𝑥
∗ s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦 ∈ 𝐵' 𝑦

∗ s.t. 𝑥∗, 𝑦 ∈ 𝑆

complexity ????

𝑓 𝑥, 𝑦

𝐵! 𝑥
∗ = 𝑥 s.t. 𝑥 − 𝑥∗ ≤ 𝛿

𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

the modern setting
Minimization      vs     Min-Max Optimization



Theorem [folklore] 

If 𝛿 ≤ 2𝜀/𝐿 , first-order methods find 𝜀, 𝛿 -

local minima, in #steps/queries to 𝑓 or 𝛻𝑓 that 

are polynomial in 1/𝜀, smoothness of 𝑓.

➢ 𝑓: Lipschitz,	𝐿-smooth,	𝑓(𝑥) ∈ [0,1]

➢ constraint set 𝑆: convex, compact

min! 𝑓(𝑥)
s.t. 𝑥 ∈ 𝑆 ⊂ ℝ#

min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ#.×ℝ#/

𝑓 𝑥∗ ≤ 𝑓 𝑥 + 𝜀, ∀ 𝑥 ∈ 𝐵' 𝑥
∗ ∩ 𝑆

(for larger 𝛿 existence holds, but problem becomes NP-hard)

Def: 𝜀, 𝛿 -local minimum Def: 𝜀, 𝛿 -local min-max equilibrium

𝑓 𝑥∗, 𝑦 − 𝜀 ≤ 𝑓 𝑥∗, 𝑦∗ ≤ 𝑓 𝑥, 𝑦∗ + 𝜀

complexity ????
Training oscillations here could be due to 

computational intractability; are they?

𝑓 𝑥, 𝑦

exist for small enough 𝛿 ≤ 2𝜀/𝐿

∀𝑥 ∈ 𝐵' 𝑥
∗ s.t. 𝑥, 𝑦∗ ∈ 𝑆∀𝑦 ∈ 𝐵' 𝑦

∗ s.t. 𝑥∗, 𝑦 ∈ 𝑆

𝐵! 𝑥
∗ = 𝑥 s.t. 𝑥 − 𝑥∗ ≤ 𝛿

𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

the modern setting
Minimization      vs     Min-Max Optimization
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Convex Two-Player Zero-Sum Games
theoretical bearings 𝑓: convex in x 

& concave in y

𝑓 𝑥, 𝑦

• [von Neumann 1928]: If 𝑋 ⊂ ℝ', 𝑌 ⊂ ℝ( are compact and convex, and 𝑓: 𝑋×𝑌 → ℝ is continuous  
and convex-concave (i.e. 𝑓 𝑥, 𝑦 is convex in 𝑥 for all 𝑦 and is concave in 𝑦 for all 𝑥), then

min
)∈+

max
,∈-

𝑓(𝑥, 𝑦) = max
,∈-

min
)∈+

𝑓(𝑥, 𝑦)

• Min-max optimal point (𝑥, 𝑦) is essentially unique (unique if 𝑓 is strictly convex-concave, o.w. a 
convex set of solutions); value always unique

• E.g. 𝑓 𝑥, 𝑦 = 𝑥! − 𝑦! + 𝑥 ⋅ 𝑦



𝑓: convex in x 

& concave in y
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• [von Neumann 1928]: If 𝑋 ⊂ ℝ', 𝑌 ⊂ ℝ( are compact and convex, and 𝑓: 𝑋×𝑌 → ℝ is continuous  
and convex-concave (i.e. 𝑓 𝑥, 𝑦 is convex in 𝑥 for all 𝑦 and is concave in 𝑦 for all 𝑥), then

min
)∈+

max
,∈-

𝑓(𝑥, 𝑦) = max
,∈-

min
)∈+

𝑓(𝑥, 𝑦)

• Min-max optimal point (𝑥, 𝑦) is essentially unique (unique if 𝑓 is strictly convex-concave, o.w. a 
convex set of solutions); value always unique

• Min-max points = equilibria of zero-sum game where min player pays max player 𝑓(𝑥, 𝑦)

• von Neumann: “As far as I can see, there could be no theory of games … without that theorem … I 

thought there was nothing worth publishing until the Minimax Theorem was proved”

• When 𝑓 is bilinear, i.e. 𝑓 𝑥, 𝑦 = 𝑥.𝐴𝑦 + 𝑏/𝑥 + 𝑐/𝑦 and X, Y polytopes

• [von Neumann-Dantzig 1947, Adler IJGT’13]: Minmax ⇔ strong LP duality

• min-max solutions can be found w/ Linear Programming and vice versa

• General convex-concave objectives: equivalence to strong convex duality

• [Blackwell’56, Hannan’57,…]: if min and max run no-regret online learning procedures (e.g. online 
gradient descent) then behavior will “converge” to equilibrium!

Convex Two-Player Zero-Sum Games
theoretical bearings
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• E.g. 𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑦

: start

: min-max equilibrium

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!
𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!

Convex Two-Player Zero-Sum Games
so what’s the issue with GDA non-convergence? 𝑓: convex in x 

& concave in y
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1
𝑇7'()

*

𝑥', 𝑦' → (𝑥∗, 𝑦∗)
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& concave in y

𝑓 𝑥, 𝑦

(typical of no-regret learners)
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𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝒙𝒕"𝟏/𝟐, 𝒚𝒕"𝟏/𝟐

𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝒙𝒕"𝟏/𝟐, 𝒚𝒕"𝟏/𝟐

Extra-Gradient Method [Korpelevich’76]
𝒙𝒕"𝟏/𝟐 = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!

𝒚𝒕"𝟏/𝟐 = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!
+𝜼/𝟐 ⋅ 𝛁𝒙𝒇(𝒙𝒕*𝟏, 𝒚𝒕*𝟏)

𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!
−𝜼/𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕*𝟏, 𝒚𝒕*𝟏)

Optimistic GDA [Popov’80]

• [Korpelevich’76, Popov’80, Facchinei-Pang’03]: Asymptotic last-iterate convergence results for 
Optimistic GDA, Extra-Gradient, Mirror-Prox, and related methods when 𝑓 is convex-concave

𝑓 𝑥, 𝑦

𝑓: convex in x 

& concave in y

Convex Two-Player Zero-Sum Games
correcting the momentum
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𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝒙𝒕"𝟏/𝟐, 𝒚𝒕"𝟏/𝟐

Extra-Gradient Method [Korpelevich’76]
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Optimistic GDA [Popov’80]

• [Korpelevich’76, Popov’80, Facchinei-Pang’03]: Asymptotic last-iterate convergence results for 
Optimistic GDA, Extra-Gradient, Mirror-Prox, and related methods when 𝑓 is convex-concave

• Rates?

• unconstrained setting: quite clear understanding [Tseng’95, Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18, Liang-

Stokes AISTATS’19, Gidel et al AISTATS’19, Mokhtari et al ’19, Liang-Stokes AISTATS’19, Mokhtari et al ’19, Azizian et al 

AISTATS’20, Golowich-Pattathil- Daskalakis-Ozdaglar COLT’20, Golowich-Pattathil-Daskalakis NeurIPS’20,…]

• constrained setting: mostly unclear [Korpelevich’76;Tseng’95;Daskalakis-Panageas’19;Lee-Luo-Wei-Zhang’20]

𝑓 𝑥, 𝑦

𝑓: convex in x 

& concave in y

Convex Two-Player Zero-Sum Games
correcting the momentum



𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝒙𝒕"𝟏/𝟐, 𝒚𝒕"𝟏/𝟐

𝑦!"# = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝒙𝒕"𝟏/𝟐, 𝒚𝒕"𝟏/𝟐

Extra-Gradient Method [Korpelevich’76]
𝒙𝒕"𝟏/𝟐 = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!

𝒚𝒕"𝟏/𝟐 = 𝑦! + 𝜂 ⋅ 𝛻%𝑓 𝑥!, 𝑦!

𝑥!"# = 𝑥! − 𝜂 ⋅ 𝛻$𝑓 𝑥!, 𝑦!
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−𝜼/𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕*𝟏, 𝒚𝒕*𝟏)

Optimistic GDA [Popov’80]

• [Korpelevich’76, Popov’80, Facchinei-Pang’03]: Asymptotic last-iterate convergence results for 
Optimistic GDA, Extra-Gradient, Mirror-Prox, and related methods when 𝑓 is convex-concave

• Rates?

• unconstrained setting: quite clear understanding [Tseng’95, Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18, Liang-

Stokes AISTATS’19, Gidel et al AISTATS’19, Mokhtari et al ’19, Liang-Stokes AISTATS’19, Mokhtari et al ’19, Azizian et al 

AISTATS’20, Golowich-Pattathil- Daskalakis-Ozdaglar COLT’20, Golowich-Pattathil-Daskalakis NeurIPS’20,…]

• constrained setting: mostly unclear [Korpelevich’76;Tseng’95;Daskalakis-Panageas’19;Lee-Luo-Wei-Zhang’20]

• interesting question: Fast, last-iterate convergence rates in constrained case?
Ømatch 𝑂

*

7
rates (w/ mild dimension-dependence) known for average-iterate convergence of no-regret 

learning methods

𝑓 𝑥, 𝑦

𝑓: convex in x 

& concave in y

Convex Two-Player Zero-Sum Games
correcting the momentum



Convex Multi-Player Games
the further benefits of negative momentum

…
action: 𝑥#
goal: min 𝑓# �⃗�
𝑓#: convex in 𝑥#

action: 𝑥$
goal: min 𝑓$ �⃗�
𝑓$: convex in 𝑥$

action: 𝑥!
goal: min 𝑓! �⃗�
𝑓!: convex in 𝑥!

• Nash equilibria are generally intractable [Daskalakis-Goldberg-Papadimitriou’06, Chen-Deng’06] but 

(coarse) correlated equilibria are quite generally tractable [Papadimitriou-Roughgarden’08, Jiang-

LeytonBrown’11]

• A generic way to converge to (coarse) correlated equilibria is via no-regret learning
• e.g. Online Gradient Descent, Multiplicative-Weights-Updates, Follow-The-Regularized-Leader

• No-regret learning is heavily used in Libratus and recent successes in Poker, e.g. [Brown-Ganzfried-

Sandholm’15, Brown-Sandholm’17, Farina-Kroer-Sandholdm’21]

• Standard no-regret learners have hindsight regret 𝑶 𝑻 in T rounds ↔ 𝑶 𝟏/ 𝑻 rate of 

convergence of empirical play to (coarse) Correlated Equilibria

• Better rates?
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…
action: 𝑥#
goal: min 𝑓# �⃗�
𝑓#: convex in 𝑥#

action: 𝑥$
goal: min 𝑓$ �⃗�
𝑓$: convex in 𝑥$

action: 𝑥!
goal: min 𝑓! �⃗�
𝑓!: convex in 𝑥!

• Standard no-regret learners have hindsight regret 𝑶 𝑻 in T rounds ↔ 𝑶 𝟏/ 𝑻 rate of convergence of 

empirical play to (coarse) Correlated Equilibria

• Better rates? 

• Use of negative momentum leads to better rates:

• [Rakhlin-Sridharan’13, Syrgkanis-Agarwal-Luo-Schapire’15]: 𝑶 𝑻𝟏/𝟒 regret in multi-player general-sum games

• [Chen-Peng’20]: 𝑶 𝑻𝟏/𝟔 regret in 2-player general-sum games

• [Daskalakis-Deckelbaum-Kim’11, Hsieh-Antonakopoulos-Mertikopoulos’21]: 𝐩𝐨𝐥𝐲(log 𝑻) regret in 2-player 

zero-sum games

• [Daskalakis-Fishelson-Golowich’21]: 𝐩𝐨𝐥𝐲(log 𝑻) regret in multi-player general-sum games

• i.e. optimal 8𝑶 𝟏/𝑻 convergence of empirical play to coarse correlated equilibria!

• [Anagnostides-Daskalakis-Fishelson-Golowich-Sandholm’21]: ditto for no internal-regret learning, no 

swap-regret learning, thus 8𝑶 𝟏/𝑻 convergence of empirical play to correlated equilibria!
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• Is negative momentum helpful, outside of the convex-concave setting? 

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: Optimistic Adam

• Adam, a variant of stochastic gradient descent with momentum and per-parameter 
adaptive learning rates, proposed by [Kingma-Ba ICLR’15], has found wide adoption 
in deep learning, although it doesn’t always converge, even in simple convex settings 
[Reddi-Kale-Kumar ICLR’18]

• In any event, Optimistic Adam is the right adaptation of Adam to “undo some 
of the past gradients,” i.e. have negative momentum 

Negative Momentum: in the Wild?



Optimistic Adam, on CIFAR10

• Compare Adam and Optimistic Adam, trained on CIFAR10, in terms of 
Inception Score

• No fine-tuning for Optimistic Adam; used same hyper-parameters for both 
algorithms as suggested in Gulrajani et al. (2017)

• Further supporting evidence for negative momentum methods by         
[Yadav et al. ICLR’18, Gidel et al. AISTATS’19, Chavdarova et al. NeurIPS’19]



Optimistic Adam, on CIFAR10

• Compare Adam and Optimistic Adam, trained on CIFAR10, in terms of 
Inception Score

• No fine-tuning for Optimistic Adam; used same hyper-parameters for both 
algorithms as suggested in Gulrajani et al. (2017)

• Further evidence in favor of negative momentum methods by [Yadav et al. 
ICLR’18, Gidel et al. AISTATS’19, Chavdarova et al. NeurIPS’19]



Decreasing Momentum Trend

[Gidel et al. AISTATS’19]
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min!max" 𝑓(𝑥, 𝑦)
s.t. (𝑥, 𝑦) ∈ 𝑆 ⊂ ℝ!.×ℝ!/

𝑓 𝑥, 𝑦

Nonconvex-Nonconcave Objectives

• If 𝑓(𝑥, 𝑦) is not convex-concave, von Neumann’s theorem breaks

• For  some 𝑓: min
)∈𝒳

max
,∈𝒴

𝑓 𝑥, 𝑦 ≠ max
,∈𝒴

min
)∈𝒳

𝑓(𝑥, 𝑦)
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Theorem [Daskalakis-Skoulakis-Zampetakis STOC’21]

First-order methods need  a number of queries to 𝑓 or 𝛻𝑓

that is exponential in at least one of 
*

:
, 𝐿, or dimension to 

find (𝜀, 𝛿)-local min-max equilibria, even when 𝛿 ≤ 2𝜀/𝐿

(the regime in which they are guaranteed to exist).
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𝑓 𝑥, 𝑦
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𝐵! 𝑦
∗ = 𝑦 s.t. 𝑦 − 𝑦∗ ≤ 𝛿

[Daskalakis-Panageas’18, 

Mazumdar-Ratliff’18]

Theorem [w/ Skoulakis-Zampetakis STOC’21]

Computing (𝜀, 𝛿)-local min-max equilibria, for 𝛿 ≤ 2𝜀/𝐿, 

is PPAD-complete.

Corollary: Any algorithm (first-order, second-order, 

whatever) takes super-polynomial time, unless P=PPAD.

non-convex setting

Minimization      vs     Min-Max Optimization
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P

NP

NP-complete

PPAD

Computing Brouwer Fixed Points of 

Lipschitz functions, and Nash Equilibria 

in general-sum, convex games are both 

PPAD-complete problems (i.e. as hard 

as any problem in PPAD)

The Complexity of Local Min-Max Equilibrium

[Daskalakis-Skoulakis-Zampetakis STOC’21]: Computing local min-max equilibria in nonconvex-

nonconcave zero-sum games is exactly as hard as (i) computing Brouwer fixed points of Lispchitz

functions, (ii) computing Nash equilibrium in general-sum convex games, (iii) at least as hard as any 

other problem in PPAD.

Traveling Salesman Problem

Linear 

Programming



Min-Min vs Min-Max – what’s the difference?

Consider a long path of better-response dynamics in a min-min (i.e. fully 

cooperative) game and a min-max (i.e. fully competitive) game

(ii) function value along 𝜀-step better-response 

path reveals information about the distance from 

the end of the path (memory/information)

better-response paths may be cyclic :S 

querying function value along non-cyclic 𝜀-step better-

response path does not reveal information about how 

far the end of the path is!

to turn this intuition into an intractability proof, hide 

exponentially long best-response path within ambient space 

s.t. no easy to find local min-max equilibria in ambient space

function value decreases along better-response 

path, thus: (i) moving along better-response path 

makes progress towards (local) minimum

to implement this, we appeal to the complexity-

theoretic machinery of PPAD and its tight 

relationship to Brouwer fixed point computation
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The Topological Nature of Local Min-Max

Local Min-Max to Sperner: color grid according to the direction of 𝑉 𝑥, 𝑦 = (−∇$𝑓 𝑥, 𝑦 , ∇%𝑓 𝑥, 𝑦 ) using

min

max
When red meets yellow or blue

meets green that’s a local min-max!

meeting guaranteed by Sperner!

local best-response direction



The Topological Nature of Local Min-Max

Local Min-Max to Sperner: taking limits, gives rise to second-order method with guaranteed asymptotic 

convergence to local min-max equilibria [Daskalakis-Golowich-Skoulakis-Zampetakis’2?]

Ø related to follow-the-ridge method of [Wang-Zhang-Ba ICLR’19] which exhibits only local convergence

min

max



The Topological Nature of Local Min-Max

Sperner to Local Min-Max: go in the reverse

Ø given colors of any Sperner instance, construct 𝑓(𝑥, 𝑦) such that local min-max eq ↔ well-colored squares

Ø implies local min-max is PPAD-complete because Sperner is. 

min

max

Roughly max chooses “squares” 

and min chooses “doors” and is 

penalized/rewarded according to 

the colors/orientation of the door 

inside the square

Complication: pass to continuum…
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- Cannot base multi-agent deep learning on:

𝜃"#$ ← 𝜃" − 𝛻%(𝑓(𝜃"))+ + +

semi-agnostic

- Instead will need a lot more work on (i) modeling the setting, (ii) choosing 

the learning model, (iii) deciding what are meaningful optimization 

objectives and solutions, (iv) designing the learning/optimization algorithm

Then we might have some more successes, like

AlphaGo and Libratus (which are certainly not 

“blindfolded GD” but use game-theoretic understanding

Monte-Carlo tree search/regret minimization)

Philosophical Corollary (my opinion, debatable)



Conclusions

• Min-max optimization and equilibrium computation are intimately related to the 
foundations of Economics, Game Theory, Mathematical Programming, and Online 
Learning Theory

• They have also found profound applications in Statistics, Complexity Theory, and many 
other fields

• Applications in Machine Learning pose big challenges due to the dimensionality and 
non-convexity of the problems (as well as the entanglement of decisions with learning)

• I expect such applications to explode, going forward, as ML turns more to multi-agent 
learning applications, and (indirectly) as ML models become more complex and harder 
to interpret



• In non-convex settings, even local equilibria are generally intractable (PPAD-hardness, 
and first-order optimization oracle lower bounds) even in two-player zero-sum games

• Challenge (wide open): Identify gradient-based (or other first-order/light-weight) 
methods for equilibrium learning in multi-player games (with state)

• Baby Challenge (wide open): Two-player zero-sum games:  min
;
max
<
𝑓(𝑥, 𝑦)

• identify asymptotically convergent methods in general settings c.f. [Daskalakis-
Golowich-Skoulakis-Zampetakis’21]

• identify special cases w/ structure, enabling fast convergence to (local notions of) 
equilibrium
• two-player zero-sum RL settings [Daskalakis-Foster-Golowich NeurIPS’20] 

• min-max theorem holds (thanks Shapley!), yet objective is not convex-concave

• (coarse) correlated equilibrium in multi-player RL

• non-monotone variational inequalities [Dang-Lang’15, Zhou et al NeurIPS’17, Lin et al’18, 
Malitsky’19, Mertikopoulos et al ICLR’19, Liu et al ICLR’20, Song et al NeurIPS’20, J. Diakonikolas-
Daskalakis-Jordan AISTATS’21]

Thank you!

Conclusions


