Equilibrium Computation and Machine Learning

Constantinos (a.k.a. "Costis") Daskalakis EECS & CSAIL, MIT

Noah Golowich (MIT)

Stratis Skoulakis (SUTD)

Manolis Zampetakis (UC Berkeley)

A Motivating Question

VS

How is it that ML models beat humans in Go and Poker, but can't enter highways?

Equilibrium Problems in Machine Learning

Past Decade:

Exciting Progress in Deep Learning speech/image recognition text generation translation

Single-Agent Optimization

f : non-convex

Empirical Finding: Gradient (+ models, learning objectives Descent (GD) and its variants hardware, data, ...) discover local minima which generalize well

Practical Experience: GD vs GD (vs GD...) have a hard time converging, let alone to something meaningful

How *deep* (no pun intended) is this issue?

Training Oscillations and/or Garbage Solutions: already in two-agent min-max settings

$$\min_{x} \max_{y} f(x, y)$$

e.g. GANs, robust classification, 2-agent RL

Generative Adversarial Nets (GANs) [Goodfellow et al'14]: $Z \sim J$

How? Set up a *zero-game* between a player tuning the parameters x of a "Generator" DNN and a player tuning the parameters y of a "Discriminator" DNN:

typically f is not convex/concave; and x, y multidimensional

Gradient Descent-Ascent (GDA) Dynamics: $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_t, y_t)$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_t, y_t)$

$$\mathcal{N}(0,I) \longrightarrow G_x(\cdot) \longrightarrow \mathbb{G}_x(\cdot) \sim P_{\text{interesting}}$$

 $\min_{x} \max_{y} \left(\mathbb{E}_{Z \sim P_{real}} \left[D_{y}(Z) \right] - \mathbb{E}_{Z \sim N(0,I)} \left[D_{y}(G_{x}(Z)) \right] \right)$

Wassertsein GAN [Arjovsky-Chintala-Bottou'17]

Training Oscillations and/or Garbage Solutions: already in two-agent min-max settings

$$\min_{x} \max_{y} f(x, y)$$

e.g. **GANs**, robust classification, 2-agent RL

typically f is not convex/concave; and x, y multidimensional

Gradient Descent-Ascent (GDA) Dynamics:

- GAN training on MNIST:

- GAN training on mixture of Gaussians:

 $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_t, y_t)$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_t, y_t)$

Training Oscillations: even for Gaussian data/bilinear objectives

- **True distribution:** isotropic Normal distribution, namely
- Generator architecture: $G_{\theta}(Z) = Z + \theta$ lacksquare
- **Discriminator architecture**: $D_w(\cdot) = \langle w, \cdot \rangle$ ${\bullet}$
- Wasserstein-GAN objective: $\min_{\theta} \max_{w} \mathbb{E}_{X}[D_{w}(X)] \mathbb{E}_{Z}[D_{w}(G_{\theta}(Z))]$ (infinite samples)

$$X \sim \mathcal{N}\left(\begin{bmatrix}3\\4\end{bmatrix}, I_{2\times 2}\right)$$

(adds input Z to internal params)

 Z, θ, w : 2-dimensional

(linear projection)

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR'18]

Training Oscillations: persistence for variants of Gradient Descent/Ascent

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR'18]

(d) GD dynamics with momentum and gradient penalty, training generator every 15 training iterations of the

(e) GD dynamics with Nesterov momentum and gradient penalty, training generator every 15 training iterations

Training Oscillations: the simplest oscillating min-max example

$$\min_{x} \max_{y} f(x, y)$$

Gradient Descent-Ascent (GDA) Dynamics:

$$f(x,y) = x \cdot y$$

$$\begin{aligned} x_{t+1} &= x_t - \eta \\ y_{t+1} &= y_t + \eta \end{aligned}$$

♦ : initialization

• : min-max equilibrium

 $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_t, y_t)$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_t, y_t)$

> y_t x_t

What gives?

- Training oscillations/garbage solutions arise:
 - even in two-agent, min-max settings
 - even when the objective is convex-concave, low-dimensional
 - even when the objective is perfectly known

What gives?

- Training oscillations/garbage solutions arise:
 - even in two-agent, min-max settings
 - even when the objective is convex-concave, low-dimensional
 - even when the objective is perfectly known
- So good luck when:
 - the objective needs to be learned besides optimized
 - the objective is nonconvex-nonconcave, high-dimensional
 - the setting is multi-agent, multi-objective

Broad Focus: Equilibrium Learning

Sources of tension:

- $\succ x_{-i}$ may be imposing constraints on feasible x_i
- \succ each f_i depends on the whole \vec{x} , yet
 - f_1, \ldots, f_n may be misaligned
 - players may be uncoordinated in choosing actions and may have partial observability of actions/payoffs/information of others

Game theory:

- > offers solution concepts, such as Nash or correlated equilibrium, to predict what might reasonably happen
- but is GD or variants going to get there?

. . .

action: $x_n \in \mathbb{R}^{d_n}$

Broad Focus: Equilibrium Learning

Main Question: When each agent uses Gradient Descent (or some other learning) dynamics), will the strategy profile converge to some Nash, correlated equilibrium, or other meaningful solution concept?

Important consideration: is f_i convex in x_i (convex game) or not (nonconvex game)?

- \succ without convexity even equilibrium existence is at risk!
- > even with convexity, Nash equilibrium is intractable [Daskalakis-Goldberg-Papadimitriou'06, Chen-**Deng'06**] so consider alternatives such as (coarse) correlated equilibrium / minimizing regret / ...

. . .

goal: min $f_n(x_1, \dots, x_n)$

Main Focus: Min-Max Optimization

 $\min_{x} \max_{y} f(x, y)$
s.t. $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

 $\succ f$: Lipschitz, L-smooth (i.e. ∇f is L-Lipschitz) \succ constraint set S: convex, compact

I will view the game as *simultaneous*

sequential games are also important in GT and ML and no harder computationally c.f. [Jin-Netrapali-Jordan ICML'20] [Mangoubi-Vishnoi STOC'21]

Main Focus: Minimization Min-Max Optimization VS

VS

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$ s.t.

s.t.

 $\succ f$: Lipschitz, L-smooth (i.e. ∇f is L-Lipschitz) \succ constraint set S: convex, compact

$\min_x \max_y f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

(I view the game as *simultaneous*)

$(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) \le f(x, y^*) \in S$$

training method; can they be removed?

$(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

(I view the game as *simultaneous*)

it's intractable (NP-hard) to find global optima & global optima may not even exist in the RHS but, how about *local* optima?

$(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

(I view the game as *simultaneous*)

 $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

[Daskalakis-Panageas'18, Mazumdar-Ratliff'18]

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$f(x, y^*) \le S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

 $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

[Daskalakis-Panageas'18, Mazumdar-Ratliff'18]

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$f(x, y^*) \le S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

Minimization vs Min-Max Optimization the modern setting

s.t.

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$

 \succ f: Lipschitz, L-smooth, $f(x) \in [0,1]$ ➤ constraint set *S*: convex, compact

[Daskalakis-Panageas'18, **Def:** (ε, δ) *-local* minimum **Def:** (ε, δ) -local min-max equilibrium Mazumdar-Ratliff'18] $f(x^*) \le f(x) + \varepsilon, \forall x \in B_{\delta}(x^*) \cap S$ $f(x^*, y) - \varepsilon$ **Theorem** [folklore] $\forall y \in B_{\delta}(y^*)$ s.t. $(x^*,$ If $\delta \leq \sqrt{2\varepsilon/L}$, first-order methods find (ε, δ) *local* minima, in #steps/queries to f or ∇f that are polynomial in $1/\varepsilon$, smoothness of f.

 $\min_x \max_y f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$f(x, y^*) \le S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

Minimization vs Min-Max Optimization the modern setting

s.t.

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$

▶ f: Lipschitz, L-smooth, f(x) ∈ [0,1]
▶ constraint set S: convex, compact

Def: (ε, δ) -local minimum
 $f(x^*) \leq f(x) + \varepsilon, \forall x \in B_{\delta}(x^*) \cap S$ Def: (ε, δ) -local minima
 $f(x^*, y) - \varepsilon$ Theorem [folklore]
If $\delta \leq \sqrt{2\varepsilon/L}$, first-order methods find (ε, δ) -
local minima, in #steps/queries to f or ∇f that
are polynomial in $1/\varepsilon$, smoothness of f.Def: (ε, δ) -local minima
 $f(x^*, y) - \varepsilon$

(for larger δ existence holds, but problem becomes NP-hard)

 $\min_{x} \max_{y} f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

Def: (ε, δ) -local min-max equilibrium [Daskalakis-Panageas'18, Mazumdar-Ratliff'18]

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$f(x, y^*) \le S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

Minimization vs Min-Max Optimization the modern setting

s.t.

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$

▶ f: Lipschitz, L-smooth, f(x) ∈ [0,1]
▶ constraint set S: convex, compact

Def: (ε, δ) -local minimum $f(x^*) \le f(x) + \varepsilon, \forall x \in B_{\delta}(x^*) \cap S$ **Theorem [folklore]** If $\delta \le \sqrt{2\varepsilon/L}$, first-order methods find (ε, δ) local minima, in #steps/queries to f or ∇f that are polynomial in $1/\varepsilon$, smoothness of f. **Def:** (ε, δ) -local minima $f(x^*, y) - \varepsilon$ $\forall y \in B_{\delta}(y^*)$ s.t. $(x^*, y) \in$

(for larger δ existence holds, but problem becomes NP-hard)

 $\min_{x} \max_{y} f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

Def: (ε, δ) -local min-max equilibrium [Daskalakis-Panageas'18, Mazumdar-Ratliff'18]

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$(x, y) \in S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

exist for small enough $\delta \leq \sqrt{2\varepsilon/L}$

complexity ????

Minimization vs Min-Max Optimization the modern setting

s.t.

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$

▶ f: Lipschitz, L-smooth, f(x) ∈ [0,1]
▶ constraint set S: convex, compact

Def: (ε, δ) -local minimum $f(x^*) \leq f(x) + \varepsilon, \forall x \in B_{\delta}(x^*) \cap S$ **Theorem [folklore]** If $\delta \leq \sqrt{2\varepsilon/L}$, first-order methods find (ε, δ) local minima, in #steps/queries to f or ∇f that are polynomial in $1/\varepsilon$, smoothness of f. **Def:** (ε, δ) -local minima $f(x^*, y) - \varepsilon$ $\forall y \in B_{\delta}(y^*)$ s.t. $(x^*, y) \in$

(for larger δ existence holds, but problem becomes NP-hard)

 $\min_{x} \max_{y} f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

Def: (ε, δ) -local min-max equilibrium [Daskalakis-Panageas'18, Mazumdar-Ratliff'18]

$$f(x^*, y^*) \leq f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$f(x, y^*) \in S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$
small enough $\delta < \sqrt{2\varepsilon/L}$

complexity??? Training oscillations here could be due to computational intractability; <u>are they</u>?

Menu

- Motivation
- Convex Games
 - remove training oscillations?
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
- Conclusions

- Motivation
- Convex Games
 - remove training oscillations?
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
- Conclusions

Convex *Two-Player Zero-Sum* Games theoretical bearings

- [von Neumann 1928]: If $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ are compact and convex, and $f: X \times Y \to \mathbb{R}$ is continuous and convex-concave (i.e. f(x, y) is convex in x for all y and is concave in y for all x), then $\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$
- Min-max optimal point (x, y) is essentially unique (unique if f is strictly convex-concave, o.w. a convex set of solutions); value always unique
- E.g. $f(x, y) = x^2 y^2 + x \cdot y$ 0.0 0.0 -0.5-0.5

Convex *Two-Player Zero-Sum* Games theoretical bearings

- [von Neumann 1928]: If $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ are compact and convex, and $f: X \times Y \to \mathbb{R}$ is continuous and convex-concave (i.e. f(x, y) is convex in x for all y and is concave in y for all x), then $\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$
- Min-max optimal point (x, y) is essentially unique (unique if f is strictly convex-concave, o.w. a convex set of solutions); value always unique
- Min-max points = equilibria of zero-sum game where min player pays max player f(x, y)
- von Neumann: "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved"
- When f is bilinear, i.e. $f(x, y) = x^{T}Ay + b^{T}x + c^{T}y$ and X, Y polytopes
 - **[von Neumann-Dantzig 1947, Adler IJGT'13]:** Minmax ⇔ strong LP duality
 - min-max solutions can be found w/ Linear Programming and vice versa
- General convex-concave objectives: equivalence to strong convex duality
- [Blackwell'56, Hannan'57,...]: if min and max run *no-regret online learning* procedures (e.g. online) gradient descent) then behavior will "converge" to equilibrium!

• E.g. $f(x, y) = x \cdot y$

$$\begin{aligned} x_{t+1} &= x_t - \eta \cdot \nabla_x f(x_t, y_t) \\ y_{t+1} &= y_t + \eta \cdot \nabla_y f(x_t, y_t) \end{aligned}$$

- start
- : min-max equilibrium

• E.g.
$$f(x, y) = x \cdot y$$

$$\begin{aligned} x_{t+1} &= x_t - \eta \cdot \nabla_x f(x_t, y_t) \\ y_{t+1} &= y_t + \eta \cdot \nabla_y f(x_t, y_t) \end{aligned}$$

start

• : min-max equilibrium

$$\frac{1}{T}\sum_{t=1}^{T} (x_t, y_t) \to (x^*, y^*)$$
(typical of no-regret learners)

f(x,y)

• E.g.
$$f(x, y) = x \cdot y$$

$$\begin{aligned} x_{t+1} &= x_t - \eta \cdot \nabla_x f(x_t, y_t) \\ y_{t+1} &= y_t + \eta \cdot \nabla_y f(x_t, y_t) \end{aligned}$$

start

• : min-max equilibrium

$$\frac{1}{T}\sum_{t=1}^{T} (x_t, y_t) \rightarrow (x^*, y^*)$$
(typical of no-regret learners)

f(x,y)

• E.g.
$$f(x, y) = x \cdot y$$

$$\begin{aligned} x_{t+1} &= x_t - \eta \cdot \nabla_x f(x_t, y_t) \\ y_{t+1} &= y_t + \eta \cdot \nabla_y f(x_t, y_t) \end{aligned}$$

start

• : min-max equilibrium

$$\frac{1}{T}\sum_{t=1}^{T} (x_t, y_t) \rightarrow (x^*, y^*)$$
(typical of no-regret learners)

f(x,y)

• E.g.
$$f(x, y) = x \cdot y$$

f : convex in *x* & concave in y

f(x,y)

• E.g.
$$f(x, y) = x \cdot y$$

f : convex in *x* & concave in y

f(x,y)

• E.g.
$$f(x, y) = x \cdot y$$

f : convex in *x* & concave in y

f(x,y)

Convex *Two-Player Zero-Sum* Games correcting the momentum

Optimistic GDA [Popov'80] $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_t, y_t)$ $+\eta/2 \cdot \nabla_x f(x_{t-1}, y_{t-1})$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_t, y_t)$ $-\eta/2 \cdot \nabla_{y} f(x_{t-1}, y_{t-1})$

• [Korpelevich'76, Popov'80, Facchinei-Pang'03]: Asymptotic last-iterate convergence results for Optimistic GDA, Extra-Gradient, Mirror-Prox, and related methods when f is convex-concave

f : convex in *x* & concave in y

Extra-Gradient Method [Korpelevich'76] $\boldsymbol{x_{t+1/2}} = \boldsymbol{x_t} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{x}} f(\boldsymbol{x_t}, \boldsymbol{y_t})$ $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_{t+1/2}, y_{t+1/2})$ $\mathbf{y_{t+1/2}} = \mathbf{y_t} + \eta \cdot \nabla_{\mathbf{y}} f(\mathbf{x_t}, \mathbf{y_t})$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_{t+1/2}, y_{t+1/2})$

Convex *Two-Player Zero-Sum* Games correcting the momentum

Optimistic GDA [Popov'80] $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_t, y_t)$ $+\eta/2 \cdot \nabla_x f(x_{t-1}, y_{t-1})$ $y_{t+1} = y_t + \eta \cdot \nabla_{\!\!\nu} f(x_t, y_t)$ $-\eta/2 \cdot \nabla_{y} f(x_{t-1}, y_{t-1})$

- [Korpelevich'76, Popov'80, Facchinei-Pang'03]: Asymptotic last-iterate convergence results for Optimistic GDA, Extra-Gradient, Mirror-Prox, and related methods when f is convex-concave
- Rates?
 - unconstrained setting: quite clear understanding [Tseng'95, Daskalakis-Ilyas-Syrgkanis-Zeng ICLR'18, Liang-Stokes AISTATS'19, Gidel et al AISTATS'19, Mokhtari et al '19, Liang-Stokes AISTATS'19, Mokhtari et al '19, Azizian et al AISTATS'20, Golowich-Pattathil- Daskalakis-Ozdaglar COLT'20, Golowich-Pattathil-Daskalakis NeurIPS'20,...]
 - constrained setting: mostly unclear [Korpelevich'76;Tseng'95;Daskalakis-Panageas'19;Lee-Luo-Wei-Zhang'20]

f : convex in *x* & concave in y

Extra-Gradient Method [Korpelevich'76] $\boldsymbol{x_{t+1/2}} = \boldsymbol{x_t} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{x}} f(\boldsymbol{x_t}, \boldsymbol{y_t})$ $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_{t+1/2}, y_{t+1/2})$ $\mathbf{y_{t+1/2}} = \mathbf{y_t} + \eta \cdot \nabla_{\mathbf{y}} f(\mathbf{x_t}, \mathbf{y_t})$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_{t+1/2}, y_{t+1/2})$

Convex *Two-Player Zero-Sum* Games correcting the momentum

Optimistic GDA [Popov'80] $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_t, y_t)$ $+\eta/2 \cdot \nabla_x f(x_{t-1}, y_{t-1})$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_t, y_t)$ $-\eta/2 \cdot \nabla_{y} f(x_{t-1}, y_{t-1})$

- [Korpelevich'76, Popov'80, Facchinei-Pang'03]: Asymptotic last-iterate convergence results for Optimistic GDA, Extra-Gradient, Mirror-Prox, and related methods when f is convex-concave
- Rates?
 - unconstrained setting: quite clear understanding [Tseng'95, Daskalakis-Ilyas-Syrgkanis-Zeng ICLR'18, Liang-Stokes AISTATS'19, Gidel et al AISTATS'19, Mokhtari et al '19, Liang-Stokes AISTATS'19, Mokhtari et al '19, Azizian et al AISTATS'20, Golowich-Pattathil- Daskalakis-Ozdaglar COLT'20, Golowich-Pattathil-Daskalakis NeurIPS'20,...]
 - constrained setting: mostly unclear [Korpelevich'76;Tseng'95;Daskalakis-Panageas'19;Lee-Luo-Wei-Zhang'20]
- interesting question: Fast, last-iterate convergence rates in constrained case? > match $O\left(\frac{1}{\sqrt{\tau}}\right)$ rates (w/ mild dimension-dependence) known for average-iterate convergence of no-regret learning methods

f : convex in *x* & concave in y

Extra-Gradient Method [Korpelevich'76] $\boldsymbol{x_{t+1/2}} = \boldsymbol{x_t} - \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{x}} f(\boldsymbol{x_t}, \boldsymbol{y_t})$ $x_{t+1} = x_t - \eta \cdot \nabla_x f(x_{t+1/2}, y_{t+1/2})$ $\mathbf{y_{t+1/2}} = \mathbf{y_t} + \eta \cdot \nabla_{\mathbf{y}} f(\mathbf{x_t}, \mathbf{y_t})$ $y_{t+1} = y_t + \eta \cdot \nabla_y f(x_{t+1/2}, y_{t+1/2})$

Convex *Multi-Player* Games the further benefits of negative momentum

action: x_1 goal: min $f_1(\vec{x})$ f_1 : convex in x_1

action: x_2 goal: min $f_2(\vec{x})$ f_2 : convex in x_2

- Nash equilibria are generally intractable [Daskalakis-Goldberg-Papadimitriou'06, Chen-Deng'06] but (coarse) correlated equilibria are quite generally tractable [Papadimitriou-Roughgarden'08, Jiang-LeytonBrown'11]
- A generic way to converge to (coarse) correlated equilibria is via no-regret learning
 - e.g. Online Gradient Descent, Multiplicative-Weights-Updates, Follow-The-Regularized-Leader
 - No-regret learning is heavily used in Libratus and recent successes in Poker, e.g. [Brown-Ganzfried-Sandholm'15, Brown-Sandholm'17, Farina-Kroer-Sandholdm'21]
- Standard no-regret learners have hindsight regret $O(\sqrt{T})$ in T rounds $\leftrightarrow O(1/\sqrt{T})$ rate of convergence of empirical play to (coarse) Correlated Equilibria
- Better rates?

action: x_n goal: min $f_n(\vec{x})$ f_n : convex in x_n

Convex Multi-Player Games the further benefits of negative momentum

action: x_1 goal: min $f_1(\vec{x})$ f_1 : convex in x_1

action: x_2 goal: min $f_2(\vec{x})$ f_2 : convex in x_2

- Standard no-regret learners have hindsight regret $O(\sqrt{T})$ in T rounds $\leftrightarrow O(1/\sqrt{T})$ rate of convergence of empirical play to (coarse) Correlated Equilibria
- Better rates?
- Use of *negative momentum* leads to better rates:
 - [Rakhlin-Sridharan'13, Syrgkanis-Agarwal-Luo-Schapire'15]: $O(T^{1/4})$ regret in multi-player general-sum games
 - [Chen-Peng'20]: $O(T^{1/6})$ regret in 2-player general-sum games
 - [Daskalakis-Deckelbaum-Kim'11, Hsieh-Antonakopoulos-Mertikopoulos'21]: poly(log T) regret in 2-player zero-sum games
- [Daskalakis-Fishelson-Golowich'21]: poly(log T) regret in multi-player general-sum games of
 - i.e. optimal $\tilde{O}(1/T)$ convergence of empirical play to *coarse* correlated equilibria!
 - [Anagnostides-Daskalakis-Fishelson-Golowich-Sandholm'21]: ditto for no internal-regret learning, no swap-regret learning, thus $\tilde{O}(1/T)$ convergence of empirical play to correlated equilibria!

action: x_n goal: min $f_n(\vec{x})$ f_n : convex in x_n

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
- Conclusions

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
- Conclusions

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
 - an experiment
- Conclusions

Negative Momentum: in the Wild?

- Is negative momentum helpful, outside of the convex-concave setting?
- [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR'18]: Optimistic Adam
 - Adam, a variant of stochastic gradient descent with momentum and per-parameter adaptive learning rates, proposed by [Kingma-Ba ICLR'15], has found wide adoption in deep learning, although it doesn't always converge, even in simple convex settings [Reddi-Kale-Kumar ICLR'18]
- In any event, **Optimistic Adam** is the right adaptation of Adam to "undo some of the past gradients," i.e. have negative momentum

Optimistic Adam, on CIFAR10 • Compare Adam and Optimistic Adam, trained on CIFAR10, in terms of

- **Inception Score**
- No fine-tuning for **Optimistic Adam**; used same hyper-parameters for both algorithms as suggested in Gulrajani et al. (2017)

adam adam ratiol optimAdam optimAdam ratio1

Optimistic Adam, on CIFAR10 • Compare Adam and Optimistic Adam, trained on CIFAR10, in terms of

- **Inception Score**
- No fine-tuning for **Optimistic Adam**; used same hyper-parameters for both algorithms as suggested in Gulrajani et al. (2017)

(b) Sample of images from Generator of Epoch 94, which had the highest inception score.

Figure 14: The inception scores across epochs for GANs trained with Optimistic Adam (ratio 1) and Adam (ratio 5) on CIFAR10 (the two top-performing optimizers found in Section 6) with 10%-90% confidence intervals. The GANs were trained for 30 epochs and results gathered across 35 runs

• Further evidence in favor of negative momentum methods by [Yadav et al. ICLR'18, Gidel et al. AISTATS'19, Chavdarova et al. NeurIPS'19]

Decreasing Momentum Trend

Figure 1: Decreasing trend in the value of momentum used for training GANs across time.

[Gidel et al. AISTATS'19]

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
 - an experiment
 - theoretical understanding
- Conclusions

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
 - an experiment
 - theoretical understanding
- Conclusions

Nonconvex-Nonconcave Objectives

- If f(x, y) is not convex-concave, von Neumann's theorem breaks
- For some $f: \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) \neq \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y)$ (both are well-defined when f is continuous and \mathcal{X} and \mathcal{Y} are convex and compact)
- If the game is sequential, the order matters!
- For other f: equality holds but there are multiple, disconnected solutions

 $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

[Daskalakis-Panageas'18, Mazumdar-Ratliff'18]

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$f(x, y^*) \le S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

(for larger δ existence holds, but problem becomes NP-hard)

Loss

Min-Max Optimization

 $\min_x \max_y f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

[Daskalakis-Panageas'18, **Def:** (ε, δ) -local min-max equilibrium Mazumdar-Ratliff'18]

$$f(x^*, y^*) \le f(x, y^*) + \varepsilon$$

$$f(x, y^*) + \varepsilon$$

$$(x, y) \in S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

exist for small enough $\delta \leq \sqrt{2\varepsilon/L}$

complexity ????

Minimization Min-Max Optimization VS non-convex setting

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$

s.t.

 \succ f: Lipschitz, L-smooth, $f(x) \in [0,1]$ \succ constraint set S: convex, compact

[Daskalakis-Panageas'18, **Def:** (ε, δ) *-local* minimum **Def:** (ε, δ) -local min-max equilibrium Mazumdar-Ratliff'18] $f(x^*) \le f(x) + \varepsilon, \forall x \in B_{\delta}(x^*) \cap S$ $f(x^*, y) - \varepsilon$ $\forall y \in B_{\delta}(y^*)$ s.t. $(x^*,$ **Theorem** [folklore] Theorem [Daskalakis-Skoulakis-Zampetakis STOC'21] If $\delta \leq \sqrt{2\varepsilon/L}$, first-order methods find (ε, δ) -First-order methods need a number of queries to f or ∇f *local* minima, in #steps/queries to f or ∇f that that is **exponential** in at least one of $\frac{1}{s}$, L, or dimension to are polynomial in $1/\varepsilon$, smoothness of f.

(for larger δ existence holds, but problem becomes NP-hard)

 $\min_x \max_y f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

$$f(x^*, y^*) \leq f(x, y^*) + \varepsilon$$

$$(y) \in S \qquad \forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$

find (ε, δ) -local min-max equilibria, even when $\delta \leq \sqrt{2\varepsilon/L}$ (the regime in which they are guaranteed to exist).

Minimization Min-Max Optimization VS non-convex setting

s.t.

 $\min_{x} f(x)$ $x \in S \subset \mathbb{R}^d$

 \succ f: Lipschitz, L-smooth, $f(x) \in [0,1]$ ➤ constraint set *S*: convex, compact

[Daskalakis-Panageas'18, **Def:** (ε, δ) *-local* minimum **Def:** (ε, δ) -*local* min-max equilibrium Mazumdar-Ratliff'18] $f(x^*) \le f(x) + \varepsilon, \forall x \in B_{\delta}(x^*) \cap S$ $f(x^*, y) - \varepsilon$ $\forall y \in B_{\delta}(y^*)$ s.t. (x^*) **Theorem** [folklore] Theorem [w/ Skou If $\delta \leq \sqrt{2\varepsilon/L}$, first-order methods find (ε, δ) -Computing (ε, δ) -lo *local* minima, in #steps/queries to f or ∇f that is **PPAD**-complete. are polynomial in $1/\varepsilon$, smoothness of f. **Corollary:** Any algorithm (first-order, second-order,

(for larger δ existence holds, but problem becomes NP-hard)

 $\min_x \max_y f(x, y)$ $(x, y) \in S \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$

$$B_{\delta}(x^*) = \{x \text{ s.t. } ||x - x^*|| \le \delta\}$$
$$B_{\delta}(y^*) = \{y \text{ s.t. } ||y - y^*|| \le \delta\}$$

$$f(x^*, y^*) \leq f(x, y^*) + \varepsilon$$

$$(y) \in S$$

$$\forall x \in B_{\delta}(x^*) \text{ s.t. } (x, y^*) \in S$$
lakis-Zampetakis STOC'21

whatever) takes *super-polynomial* time, unless P=PPAD.

Traveling Salesman Problem

Traveling Salesman Problem

Computing Brouwer Fixed Points of Lipschitz functions, and Nash Equilibria in general-sum, convex games are both PPAD-complete problems (i.e. as hard as any problem in PPAD)

[Daskalakis-Skoulakis-Zampetakis STOC'21]: Computing local min-max equilibria in nonconvexnonconcave zero-sum games is exactly as hard as (i) computing Brouwer fixed points of Lispchitz functions, (ii) computing Nash equilibrium in general-sum convex games, (iii) at least as hard as any other problem in **PPAD**.

Traveling Salesman Problem

Computing Brouwer Fixed Points of Lipschitz functions, and Nash Equilibria in general-sum, convex games are both PPAD-complete problems (i.e. as hard as any problem in PPAD)

Min-Min vs Min-Max – what's the difference?

Consider a long path of better-response dynamics in a min-min (i.e. fully cooperative) game and a min-max (i.e. fully competitive) game

↑^{max}

function value decreases along better-response path, thus: (i) moving along better-response path makes progress towards (local) minimum

to implement this, we appeal to the complexitytheoretic machinery of PPAD and its tight relationship to Brouwer fixed point computation better-response paths may be cyclic :S

querying function value along non-cyclic ε -step betterresponse path does not reveal information about how far the end of the path is!

to turn this intuition into an intractability proof, hide exponentially long best-response path within ambient space s.t. no easy to find local min-max equilibria in ambient space

(variant of) Sperner's Lemma: No matter how the internal vertices are colored, there must exist a square containing both red and yellow or both blue and green.

Note that **red** and **yellow** is an interesting pair, as is **blue** and **green** (all other pairs appear somewhere on the boundary)

max

Local Min-Max to Sperner: color grid according to the direction of $V(x, y) = (-\nabla_x f(x, y), \nabla_y f(x, y))$ using

local best-response direction

min

Local Min-Max to Sperner: color grid according to the direction of $V(x, y) = (-\nabla_x f(x, y), \nabla_y f(x, y))$ using

local best-response direction

min

Local Min-Max to Sperner: color grid according to the direction of $V(x, y) = (-\nabla_x f(x, y), \nabla_y f(x, y))$ using

When **red** meets yellow or blue meets green that's a local min-max! meeting guaranteed by Sperner!

local best-response direction

Local Min-Max to Sperner: taking limits, gives rise to second-order method with *guaranteed asymptotic* convergence to local min-max equilibria [Daskalakis-Golowich-Skoulakis-Zampetakis'2?] > related to follow-the-ridge method of [Wang-Zhang-Ba ICLR'19] which exhibits only local convergence

Sperner to Local Min-Max: go in the reverse

- \blacktriangleright given colors of any Sperner instance, construct f(x, y) such that local min-max eq \leftrightarrow well-colored squares
- implies local min-max is PPAD-complete because Sperner is.

Roughly max chooses "squares" and min chooses "doors" and is penalized/rewarded according to the colors/orientation of the door inside the square

Complication: pass to continuum...

[Daskalakis-Skoulakis-Zampetakis STOC'21]: Computing local min-max equilibria in nonconvexnonconcave zero-sum games is exactly as hard as (i) computing Brouwer fixed points of Lispchitz functions, (ii) computing Nash equilibrium in general-sum convex games, (iii) at least as hard as any other problem in **PPAD**.

Traveling Salesman Problem

Computing Brouwer Fixed Points of Lipschitz functions, and Nash Equilibria in general-sum, convex games are both PPAD-complete problems (i.e. as hard as any problem in PPAD)

Menu

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
 - an experiment
 - theoretical understanding
 - main result: intractability of nonconvex-nonconcave min-max
 - oscillations can be removed but only asymptotic convergence, in general
 - impressionistic proof vignette
- Conclusions

Menu

- Motivation
- Convex Games
 - training oscillations can be removed using negative momentum
- Nonconvex Games
 - are oscillations inherent/reflective of intractability?
 - an experiment
 - theoretical understanding
 - main result: intractability of nonconvex-nonconcave min-max
 - oscillations can be removed but only asymptotic convergence, in general
 - impressionistic proof vignette
- **Philosophical Corollary and Conclusions** lacksquare

Philosophical Corollary (my opinion, debatable)

- Cannot base multi-agent deep learning on:

+ $\theta_{t+1} \leftarrow \theta_t - \nabla_{\theta}(f(\theta_t))$ +

+

semi-agnostic

Philosophical Corollary (my opinion, debatable)

- Cannot base multi-agent deep learning on:

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \nabla_{\boldsymbol{\theta}}(f(\boldsymbol{\theta}_t)) +$$

semi-agnostic

- Instead will need a lot more work on (i) modeling the setting, (ii) choosing the learning model, (iii) deciding what are meaningful optimization objectives and solutions, (iv) designing the learning/optimization algorithm

Philosophical Corollary (my opinion, debatable)

- Cannot base multi-agent deep learning on:

-
$$\theta_{t+1} \leftarrow \theta_t - \nabla_\theta(f(\theta_t))$$
 +

semi-agnostic

- Instead will need a lot more work on (i) modeling the setting, (ii) choosing the learning model, (iii) deciding what are meaningful optimization objectives and solutions, (iv) designing the learning/optimization algorithm
- Then we might have some more successes, like AlphaGo and Libratus (which are certainly not "blindfolded GD" but use game-theoretic understanding Monte-Carlo tree search/regret minimization)

Conclusions

- Min-max optimization and equilibrium computation are intimately related to the foundations of Economics, Game Theory, Mathematical Programming, and Online Learning Theory
- They have also found profound applications in Statistics, Complexity Theory, and many other fields
- Applications in Machine Learning pose big challenges due to the dimensionality and non-convexity of the problems (as well as the entanglement of decisions with learning)
- I expect such applications to explode, going forward, as ML turns more to multi-agent learning applications, and (indirectly) as ML models become more complex and harder to interpret

Conclusions

- In non-convex settings, even local equilibria are generally intractable (PPAD-hardness, and first-order optimization oracle lower bounds) even in two-player zero-sum games
- **Challenge (wide open):** Identify gradient-based (or other first-order/light-weight) methods for *equilibrium learning* in multi-player games (with state)
- Baby Challenge (wide open): Two-player zero-sum games: min max f(x, y)
 - identify asymptotically convergent methods in general settings c.f. [Daskalakis-**Golowich-Skoulakis-Zampetakis'21**]
 - identify special cases w/ structure, enabling fast convergence to (local notions of) equilibrium
 - two-player zero-sum RL settings [Daskalakis-Foster-Golowich NeurIPS'20]
 - min-max theorem holds (thanks Shapley!), yet objective is not convex-concave
 - (coarse) correlated equilibrium in multi-player RL
 - non-monotone variational inequalities [Dang-Lang'15, Zhou et al NeurIPS'17, Lin et al'18, Malitsky'19, Mertikopoulos et al ICLR'19, Liu et al ICLR'20, Song et al NeurIPS'20, J. Diakonikolas-**Daskalakis-Jordan AISTATS'21**

Thank you!