Causality

Bernhard Scholkopt

Max Planck Institute for Intelligent Systems & ETH Ziirich

Bernhard Schélkopf




Moravec's paradox, 1980s

“Machines will be capable, within twenty years, of doing any work a man can do”



& https://www.gwern.net/Tanks
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THE NEURAL NET TANK URBAN LEGEND

AI folklore tells a story about a neural network trained to detect tanks which instead learned to detect time of day;

SITE investigating, this probably never happened.
I\NA::ZW: NN, history, sociology, Google, bibliography
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A cautionary tale in artificial intelligence tells about
researchers training an neural network (NN) to detect
tanks in photographs, succeeding, only to realize the
photographs had been collected under specific condi-
tions for tanks/non-tanks and the NN had learned
something useless like time of day. This story is often
told to warn about the limits of algorithms and impor-
tance of data collection to avoid “dataset bias”/“data
leakage” where the collected data can be solved using
algorithms that do not generalize to the true data dis-
tribution, but the tank story is usually never sourced.

I collate many extent versions dating back a
quarter of a century to 1992 along with two NN-related
anecdotes from the 1960s; their contradictions & de-
tails indicate a classic “urban legend”, with a probable
origin in a speculative question in the 1960s by Edward
Fredkin at an Al conference about some early NN re-
search, which was subsequently classified & never fol-
lowed up on.

I suggest that dataset bias is real but exaggerated
by the tank story, giving a misleading indication of
risks from deep learning and that it would be better to
not repeat it but use real examples of dataset bias and
focus on larger-scale risks like Al systems optimizing
for wrong utility functions.

day (“environment”)

tank class weather

image




Human Ievel object recognition?

milk agriculture farm cattle livestock dairy

hayfield field grass mammal pasture calf

farmland rural animal pastoral bull grassland

eef agriculture cattle milk pasture mammal
Btk farmland grass farm hayfield rural herd
dairy pastoral grassland field calf bull
mammal pasture grass animal no person nature
gPiculture livestock hayfield cattle farm rural field

ilk land beef toral trysid
mi grassian ee pastora countrysiae fI/’Om Perona’ 201 7;
cf. Lopez-Paz et al., 2016



Machine learning uses correlations rather than causality

beach sand travel no person water sea seashore

summer sky outdoors ocean nature

no person water mammal cattle outdoors

landscape travel sky livestock

water no person beach seashore sea sand mammal

outdoors travel ocean surf sky

from Perona, 2017,
cf. Lopez-Paz et al., 2016




Adversarial Vulnerability

“airliner”

Image credit: http://people.csail.mit.edu/madry/lab/blog/adversarial/2018/07/06/adversarial _intro/

C. Szegedy et al. Intriguing properties of neural networks. arXiv:1312.6199, 2013
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Reichenbach’s Common Cause Principle

(i) if X and Y are de- (i) Z screens X
pendent, then there and Y from each

exists Z causally in- other (given Z,

: X und Y become
ﬂueIlCll’lg bOth; . by permission of the
lndep el’ldent ) University of Pittsburgh.

All rights reserved.

() @©O—O) @
P(XY)
S p(x|2)py|2)p(2) p(x)p(y|x) p(x|y)p(y)
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Correlation by conditioning on common effects

Berkson’s paradox (1946) @
Example: X,Y, Z binary
=XorY

XLY but XALY|Z

e assumption 1: there is no correlation between being a good speaker (X) and being a good scientist (Y)
e assumption 2: to be successful, you need to be either a good speaker or a good scientist (or both)

e among the successful scientists, there is a negative correlation between being a good speaker and being a
good scientist
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Asymmetry under inverting arrows

VAIPAN

XL1Y X LY
X LY|Z X1Y|Z
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Definition of a Structural Causal Model (peari et ai)

e directed acyclic graph G with vertices X4,..., X,

(following arrows does not lead to loops)

e Semantics: vertices = observables, arrows = direct causation

® X/L' L= fL(PA“ U&> , with independent RVs Ul, Cee Un that possess a

joint density

e [J; stands for “unexplained” (alternatively “noise” or “exogenous variable”)

parents (causes) of X

e this is also called a (monlinear) structural equation model
()
N
N

non-descendk
‘/ \ \/ N —/

’ \_ _/ descendants
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Reichenbach’s Principle and causal sufficiency

e Independence of noises is a form of ”causal sufficiency:” if the noises were
dependent, then Reichenbach’s principle would tell us the causal graph is
incomplete

e The SCM model satisfies Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence
can only arise in two vertices that depend (partly) on the same noise
term(s).

2. if we condition on these noise terms, the variables become independent

fz
‘\fX fy
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Entailed distribution

parents (causes) of XJ

non-descendants \__/\

7 )

‘/ \ \/’\ \_/
1 Xz' = f?ﬁ(PAi; Uz?); \_ _/ descendants
with independent Uy, ..., U,. ‘

e Recursively substitute the parent equations to get X, = ¢,(Uy, ..., U,),
with independent Uy, ..., U,.

e Each X, is thus a RV and we get a joint distribution of X5, ..., X,
called the observational distribution.

e The distribution and the DAG form a directed graphical model and
any directed graphical model can be written as a functional causal
model.
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Entailed distribution

parents (causes) of XJ

\ 7\
non-descendants I\ /\

7 )

‘/ \ \/"\. N
‘ \_ _/ descendants

e A structural causal model entails a joint distribution p(X1, ..., X,).

Questions:

(1) What can we say about it?

(2) Can we recover G from p?
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Mal‘kOV COIlditiOIlS (Lauritzen 1996, Pearl 2000)

Theorem: the following are equivalent:

— Existence of a structural causal model

— Local Causal Markov condition: X; statistically independent of non-descendants,

given parents (i.e.: every information exchange with its non-descendants involves its parents)

— Global Causal Markov condition: “d—SGp&I’&tiOH” (characterizes the set of independences

implied by local Markov condition — see below)
— Factorization p(X1,..., X,) =], p(X; | PA;)

(subject to technical conditions)

p (X, | PA;) is called a causal conditional or causal Markov kernel.
[t corresponds to the structural “equation” X, := f;(PA;, U;).

Not every conditional is causal — only those that condition on the parents in our DAG.
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Graphical Causal Inference (Spirtes, Glymour, Scheines, Pearl, ...)

Question: How can we recover GG from a Single P (e.g., from the observational distribution)?
Answer: by conditional independence testing, infer a class containing the correct G

\ parents (causes )of X
non-descendh . \ \

@—x
. \ \ _ descendants
Problems: ®

e Markov condition states (X 1L Y |Z)e = (X 1LY |Z),, but
we Ileed “failtilfu.iIleSS77 (X _J.l_ Y |Z)G p— (X _J.l_ Y |Z>p (Sprites, Glamour, Scheines 2001)

Hal’d tO JUStlfy fOI‘ ﬁﬁlte data (Uhler, Raskutti, Bihlmann, Yu, 2013).

(i.e., track how the noise information spreads).

e if the f; are complex, then conditional independence testing based on finite samples
becomes arbitrarily hard

e for two variables only, there are no conditional independences 2
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Interventions and shifts

parents (causes) of xJ

o

non-descendh \
"

‘/ \ \/ ™\ \_/
‘ \_ _/ descendants

e Definition. Replacing X, := f;(PA;, U;) with another assignment (e.g., X, := const.)
is called an intervention on X;.

e The entailed distribution is called the interventional distribution.

e This contains as special cases: domain shift distribution and covariate shift distribution
(see below).

e A general intervention corresponds to changing some causal conditionals p(X;|PA;)
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Pearl’s do-calculus

e Motivation: goal of causality is to infer the effect of interventions

e distribution of Y given that X is set to x: p(Y|doX =z) or p(Y|dox)
e don’t confuse it with p(Y|z)

e can be computed from p and G
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Difference between seeing and doing

p(y|x)

Probability a participant of this course can get a NeurIPS paper accepted

p(y|dox)

Probability that anyone can get a NeurIPS paper accepted after being made
to participate in this course
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Computing p(X;,..., X, |dox;)

from p(X1,...,X,) and G

e Start with causal factorization

p(X1,...,X,) = [ [ p(X;1PAy)

e Replace p(X;|PA;) with dx. .,

p(Xla e 7Xn‘d0xi) - HP(XJ‘PAJ)(SXZ'%
JF#1
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Computing p(Xg|do x;)
Sum over x; to get

p(X1,. ., Xic1, Xis1, ..., Xnldo x;) = [ [ p(X;|PA;(x:)).
J#I

e i.e.: for j # 1, drop p(X;|PA;) and substitute x; for X;

e obtain p(Xg|do x;) by marginalisation

Bernhard Schélkopf



Examples for p(.|doxz) = p(.|x)

®—0

oo o %



Examples for p(.|dox) # p(.|x)

o p(Y|dow) = P(Y) # P(Yz)
©—0

e p(Yl|doz) = P(Y) # P(Y|z)

®/
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Controlling for confounding / adjustment formula
Y depends on X due to X — Y and the confounder Z

e (Causal factorization @\
p(X,Y,Z) =p(Z) p(X|Z) p(Y|X, 2Z) ®/ 4@

e Replace p(X|Z) with dx, and integrate out X:

p(X,Y, Zldox) = p(Z)dx.pY|X,Z)
p(Y,Zldox) = p(Z)p(Y]|z,Z)

e marginalize over Z to get the "adjustment formula”

p(Y|do x) = Zp p(Y|x, 2)

This is different from p(Y|z) (Simpson’s paradox).




- . . . . e
Simpson's paradox in Covid-19 case fatality rates
(v. Kiigelgen, Gresele, https.//arxiv.orq/abs/2005.07180 / IEEE Trans. Al) »

Case fatality rates (CFRs) by age group mj/“ )
mmm China, 17 February Simpson’s paradox: opposite trends
14 A
[ Italy, 9 March

in grouped and aggregated data.

Here, it stems from a difference in
case demographic:

Proportion of confirmed cases by age group

I China, 17 February
| mmwm Italy, 9 March

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ | Total
Age

Case fatality rates (CFRs) in Italy are lower

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+
Age

Thanks to Elias Bareinboim


https://arxiv.org/abs/2005.07180

Coarse-grained causal graph

Data generating process:
* Randomly pick a country C
* Given C, sample a positively-tested patient
with age group A
* Given Cand A, sample medical outcome, or
mortality, M (deceased at time of
reporting?)
Assumptions & meaning of directed arrows:
* C - A: general population demographic, inter-generational mixing, age-
specific social-distancing, ...
* A - M: age-related health condition & other comorbidities.
e C > M: number of ventilators & ICU beds, ...

A




Mediation analysis

Only for linear models can total causal
effect (TCE) be decomposed into direct
effect (DE) and indirect effect (IE),

A
TCE=DE+IE
. . Path-specific effects of changing country from China to Italy
Due to interactions, DE and IE are not 10 _ TR
. . . I Natural Direct Effect .
uniquely defined in general, but depend me= Natural Indirect Effect

g | Wmm Total Causal Effect

on the state of the mediator.

* Natural Direct Effect (NDE): case
demographic kept as in China while CFRs
per age group changed to those in Italy.

* Natural Indirect Effect (NIE): CFRs per
age group kept as in China, while case 01
emographic Changed to that in Italy 9 Mérch 12 IViarch 19 IViarch 26 IViarch 2A|pril 9Alpril

Change in total CFR (%)

Date



Does 1t make sense to talk about
causality without mentioning time?

Does 1t make sense to talk about
statistics without mentioning time?

Bernhard Schélkopf



Causality in differential equations

Consider the set of differential equations

dx

E = f(X), X & Rd,

with initial value x(¢y) = xo.
Picard—Lindel6f: locally, if f is Lipschitz, there exists a unique solution x(t)
—> the immediate future of x is implied by its past
Using dt and dx = x(t + dt) — x(t):
x(t+dt) =x(t) +dt - f(x()).

This tells us which entries of x(¢) cause the future of others x(¢ + dt), i.e., the causal structure.

https://arxiv.org/abs/1911.10500
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What is cause and what is effect?

S _
o v
g
)
e,
=
2]

o -

lf') —

0 500 1000 1500 2000 2500 3000
altitude
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10

T
0 500 1000 1500 2000 2500 3000
altitude

e intervention on a: raise the city, find that ¢ changes

e hypothetical intervention on a: still expect that ¢
changes, since we can think of a physical mechanism
p(t|a) that is independent of p(a)

e we expect that p(t|a) is invariant across, say, differ-
ent countries in a similar climate zone

Bernhard Schélkopf



Principle (ICM):

The causal generative process

is composed of autonomous
modules that do not inform

or influence each other. FORVRR




(physical) independence of mechanisms
Principle 2

& ) Y /= R

intervenability (e . independence

independence :
autonomy . ; of noises,
: of information -

modularity ; conditional

: : contained :

invariance ; : independence

farif (In mechanisms et
 transfer J (structures )

Peters, Janzing, Scholkopf. Elements of Causal Inference: Foundations and Learning 47} fﬁfgﬁgm
Algorithms. MIT Press, 2017 P

http:// www.math.ku.dk/~peters/jonas files/bookDRAFT11-online-2017-06-28.pdf
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Independence of input and mechanism

 No noise on effect variable

* Assumption: y = f(x) with invertible f @ @

A

y
f(x)

Daniusis, Janzing, Mooij, Zscheischler, Steudel,
Zhang, Scholkopf:

Inferring deterministic causal relations, UAI

P A T 2010




Causal independence implies anticausal dependence

Assume that f is a monotonically increasing bijection of [0, 1].

View p, and log f’ as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):
Cov (1Og flapa:) =0

Note: this is equivalent to

[ 1o i = [ 1os sy,

since Cov (log f',p;) = Ellog f" - p.] — Ellog f'|E|p.] = Ellogf" - p.] —
2 [log £

Proposition: If f = Id,
Cov (log f_ll,py) > 0.

Bernhard Schélkopf



Uy, U,y uniform densities for =,y
vy, v, densities for x,y induced by transforming wu,, u, via f ~* and f

Equivalent formulations of the postulate:

Additivity of Entropy:
S (py) — S (pz) =S (vy) — 5 (ug)

Orthogonality (information geometric): o [ -
D (ps || vz) = D (pa [ uz) + D (uz || vz)

which can be rewritten as £
D (py || uy) = D (pax | uz) + D (vy || uy) 2R

Interpretation:
irregularity of p, = irregularity of p, + irregularity introduced by f

Bernhard Schélkopf



Algorithmic structural causal model

e for every node z; there exists a program wu; that computes z;
from its parents pa; a.
P3;

U.
/ J
e all u; are jointly independent (
e the program u; represents the causal mechanism that generates ( pa J ) U J)
the effect from its causes

e u; are the analog of the unobserved noise terms in the statistical
functional model

Theorem: this model implies the causal Markov condition
(replacing Shannon entropy with Kolmorogov complexity).

(Janzing € Scholkopf, IEEE Trans. Information Theory 2010)
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Gedankenexperiment

Particles scattered at an object

e incoming beam: ‘cause’
. L .
e scattering at object: ‘mechanism

e outgoing beam: ‘effect’, contains information about the object

Bernhard Schélkopf



Independence assumption

e s initial state of a physical system

e ) the system dynamics applied for some fixed time

Independence Principle: s and M are algorithmically inde-
pendent

I(s: M) =0,
i.e., knowing s does not enable a shorter description of M and vice
versa.

Bernhard Schélkopf



Thermodynamic Arrow of Time

Theorem [non-decrease of entropy]|. Let M be a bijective map on the set of
states of a system then (s : M) = 0 implies

K(M(s)) > K(s)

Proof idea: If M(s) admits a shorter description than s, knowing M admits a shorter description of s:
just describe M(s) and then apply M 1.

Janzing, Chaves, Scholkopf. Algorithmic independence of initial condition and dynamical law in ther-

modynamics and causal inference. New J. of Physics, 2016
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Using cause-effect knowledge

e example 1: predict protein from mRNA sequence

( \ Growing peptide chain

o
\ ( Qr fp\\\;) C au S aJl
L F 4 (Lys) <« =2\ Incoming tRNA
.‘9&\ »Q?SP‘ bound to Amino Acid
om:ltecl)Rr?JA (‘
F:«v:x TRNA TRNA /
/ u U c UA \

Jummnﬁmnmnnmmmmﬂ URVAVRIRVATATAR

UGGAAAGAUUUC

N

v P / MessengerRNA Y
k /‘
Peptide Synthesis .
Source: http://commons.wikimedia.org/wiki/File: Peptide syn.png CCLUSGZ mec}lanzsm 2

e example 2: predict class membership from handwritten digit

antlcausal
Y
N N v
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Covariate Shift and Semi-Supervised Learning

Assumption: p(C') and mechanism p(F|C) “independent”
Goal: learn X — Y, i.e., estimate (properties of) p(Y'|X)

Semi-supervised learning: improve estimate by more data from p(X)
Covariate shift: p(X) changes between training and test

Causal learning

p(X) and p(Y|X) independent X ;0 Y
1. semi-supervised learning impossible id
NX NY

2. p(Y|X) invariant under change in p(X)

o : causal mechanism
Anticausal learning ’

p(Y) and p(X|Y') independent . ;
hence p(X) and p(Y|X) dependent QQD ?d Scholkopf, Janzing, Peters, Sgouritsa,

i

NX NY

Zhang, Mooij, 2012, cf. Storkey, 2009,

1. semi-supervised learning possible Bareinboim & Pearl. 2012

2. p(Y|X) changes with p(X)
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* Experimental Meta-Analysis confirms prediction
Scholkopf et al., ICML 2012, von Kiigelgen et al., UAI 2020, Jin et al., submitted

* All known SSL assumptions link p(X) to p(Y|X):
* Cluster assumption: points in same cluster of p(X) have the same Y

» Low density separation assumption: p(Y|X) should cross 0.5 in an area where

p(X) 1s small
* Semi-supervised smoothness assumption: E(Y|X) should be smooth where

p(X) 1s large

Bernhard Schélkopf



Independent Causal Mechanisms in NLP
(with Zhijing Jin & Julius von Kugelgen)

Prompt for annotators

2 Given the English sentence above, can
° you write its Spanish translation?

Common NLP tasks: Cause: [En] This is a beautiful world. > /'Annotation

process
Effect: [Es] Este es un mundo hermoso. (Noise)
Category Example NLP Tasks Effect = CausalMechanism (Cause, Noise)
Summarization, question answer-
Causal learning ing, parsing, tagging, data-to-text

generation, information extraction

Author attribute classification,
Anticausal learning question generation, review sen-
timent classification

Other/mixed (depend- Machine translation, language
ing on data collection) modeling, intent classification




ICM in NLP: Findings

(with Zhijing Jin & Julius von Kugelgen)

Causal direction corresponds to shorter description of machine translation data
in terms of minimum description length (MDL):

Data (X—Y) MDL(X) MDL(Y) MDL(YIX) MDL(XIY) MDL(X)+MDL(YIX) vs. MDL(Y)+MDL(XIY)

En—Es 46.54 105.99 2033.95 2320.93 2080.491<2426.92
Es—En 113.42 55.79 3289.99 3534.09 3403.41} < 3589.88
En—Fr 20.54 53.83 503.78 535.88 524.323<589.71
Fr—En 53.83 21.6 705.28 681.12 759.11}>1702.72
Es—Fr 58.26 55.66 701.04 755.5 759.301<RB11.16

Fr—Es 56.14 54.34 665.26 706.53 721.401<[760.87




ICM in NLP: Findings

(with Zhijing Jin & Julius von Kugelgen)

Implications of ICM for SSL and DA confirmed by NLP meta-study:

Semi-supervised learning (SSL): anticausal > causal.

Task Type Mean ASSL (£std) According to ICM

Causal +0.04 (£4.23) Smaller or none
Anticausal +1.70 (£2.05) Larger

Domain adaptation (DA): causal > anticausal.

Task Type Mean ADA (+std) According to ICM

Causal 5.18 (£6.57) Larger
Anticausal 1.26 (£1.79) Smaller




Causal Modeling for Confounder Removal
in Exoplanet Detection




Milky Way Galaxy




Exoplanet Transits

light curve

brightness




Kepler 5088536 Quarter 5
Kepler magnitude 11.529000
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e
5

2 ‘ . . — I . I | - Dat:a .o Predictionl_

= :
.‘B L
L L
=)
=L

4 } ; t 1.0010
é S/N = 5.460 11,0005
% R 11.0000
©
= . 40.9995

{
. . d L L 0.9990 //{:i?\
440 460 480 500 520 540 /‘///A \

Bernhard Schélkopf time [BK]D]



half-siblings

Kepler 5088536 Quarter 5 Kepler 5949551 Quarter 5
CCD channel 25 Row 875 Column 322 CCD channel 25 Row 57 Column 756
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Half-Sibling Regression

unobserved

observed

[dea: remove F[Y|X] from Y to reconstruct Q.

Bernhard Schol

X 1L Q

X and Y share information |
(only) through N with

Jonas

If we try to predict Y from X,
we only pick up the part due to NV

avid Hogg, Dan Foreman-Mackey, Dun Wang, Dominik Janzing
Peters, Carl-Johann Simon-Gabriel (rcmL 2015)




Proposition. (), N,Y, X random variables, X 1 (), and f measurable.
Suppose
oY =Q+ f(N) (additive noise model)

o f(N)=1(X) for some ¥ (complete information).

Then Q ==Y — E[Y|X] = Q — E[Q].

Q) can be reconstructed, up to a constant offset, from'Y and E[Y|X].

unobserved

observed

Bernhard Schélkopf



Proposition. (), N, Y, X random variables, X I (), and f measurable.
Suppose

o Y =Q+ f(N) (additive noise model)

Then E[(Q — (Q — E[Q]))’] = E[Var[f(N)|X]].

If f(N) can (in principle) be predicted well from X,

then ) can be reconstructed well.
unobserved

observed

Bernhard Schélkopf
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Planet-Hunting Kepler Spacecraft Suffers
Major Failure, NASA Says

By Mike Wall May 15,2013 Science & Astronomy

00060060

An artist's interpretation of the Kepler observatory in space.

This story was updated at 5:20 p.m. EDT.

The planet-hunting days of NASA's prolific Kepler space telescope, which has
discovered more than 2,700 potential alien worlds to date, may be over.

The second of Kepler's four reaction wheels — devices that allow the
observatory to maintain its position in space — has failed, NASA officials
announced Wednesday (May 15).



NASA

Kepler’s Second Light: How K2 Will Work

T

NASA'S K2 MISSION: WHERE K2 WILL OBSERVE

FIELD 1

ane

The search for planets continues today!
May 30, 2014

MILKY WAY GALAXY




17 confirmed eXoplanets

(Foreman-Mackey, Montet, Hogg, Morton, Wang, Schélkopf, arXiv:1502.04715):
(Armstrong et al., arXiv:1503.00692; Montet et al., arXiv:1503.07866 ).
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ABSTRACT

Photometry of stars from the K2 extension of NASA’s Kepler mission is afflicted by systematic effects caused by
small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching
K2 light curves for evidence of exoplanets by simultaneously fitting for these systematics and the transit signals of
interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it
can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1
data set and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline
performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates,
we present posterior distributions on the properties of each system based strictly on the transit observables.

Key words: catalogs — methods: data analysis — methods: statistical — planetary systems — stars: statistics

1. INTRODUCTION a few percent of the data are actually stored and downloaded to
Earth, there is not enough information in the data to derive or
1nfer a complete or accurate flat-field map. Therefore Work on

TN ‘11 ~ 1 1 11

The Kepler Mission was incredibly successful at finding
transiting exoplanets in the light curves of stars. The Mission



The Catalog of Planet Candidates and their Observable Properties

Table 2

EPIC Kepler mag R.A. (]2000) Decl. (J2000) P (days) 1o [BID-2456808] Rp/R.
201208431 14.41 174.745640 -3.905585 10.0040 0013 7:5216990%8 0.03497 0003
201257461 11.51 178.161109 -3.094936 50.2677 00053 20.3735‘33(;; 0.03347 00073
201295312 12.13 174.011630 -2.520881 5.65627 09007 372281 200% 0.0175% 002
201338508 14.36 169.303502 -1.877976 10.93287 00037 6.5967 00088 0.0339°900%
201338508 14.36 169.303502 -1.877976 5.7350 00006 0.8626"0 003 0.0331°909%
201367065 11.57 172.334949 —1.454787 10.05427+ 0004 5418670018 0.0354 00022
201367065 11.57 172.334949 —1.454787 24.6470° 00014 4.2769+35030 0027270018
201384232 1251 178.192260 ~1.198477 3093757 902 19.50357 0003 0.026075 091
201393098 13.05 167.093771 ~1.065755 28.67937 0910 16.62127053% 0.0231°09938
201403446 11.99 174.266344 -0.907261 19.1535+ 99030 7343700188 0.0154 3014
201445392 14.38 169.793665 -0.284375 10.3527 0001 5611070508 0.0349°0 0032
201445392 14.38 169.793665 —0.284375 5.06447 00006 5.0690 " 0059 0.0274+300%
201465501 14.96 176.264468 0.005301 18. 4488*3%{2 14.67191050% 0.0531°500%
201505350 12.81 174.960319 0.603575 11,9069 9003 9.2764* 00013 0.0446 0002
201505350 12.81 174.960319 0.603575 7.91937 0001 5.3840 00006 0.07470:0018
201546283 12.43 171515165 1.230738 6.77134 50001 4.8453*5012 00481700039
201549860 13.92 170.103081 1.285956 5.6083 00005 4119510903 0.0283 90034
201555883 15.06 176.075940 1.375947 5.7966 ) 0003 5:3173+0-0022 0.06047 0058
201565013 1691 176.992193 1.510249 86381199003 3.4283+50018 0.1538* 00353
201569483 11.77 167.171299 1.577513 5.7969" 000 53130700002 0.3587 0 0as
201577035 12.30 172.121957 1.690636 19.3062 00013 11.57905050% 0.0380 00073
201596316 13.15 169.042002 1.986840 39.84157 (9138 21.857270012¢ 0.02677 ) 0033
201613023 12.14 173.192036 2.244884 8.281870 0005 7.3752100033 0.02057 00042
201617985 14.11 179.491659 2321476 7.2823199007 4.63371090% 0.03337 00033
201629650 12.73 170.155528 2.502696 400492790186 453637009 0.02415:9923
201635569 15.55 178.057026 2.594245 8.3681700003 3.4514109013 0.0991+ 90539
201649426 13.22 177.234262 2.807619 27.7704+3.9001 13347633501 0.4365* 00107
201702477 14.43 175.240794 3.681584 40.7365* 09038 3.54517 9038 0.0808 033
201736247 14.40 178.110797 4.254747 118106750018 3.84837000% 0.03470003¢
201754305 14.30 175.097258 4.557340 19.07267 09048 1.4893100128 0.0297+0.0042
201754305 14.30 175.097258 4557340 7.6202755012 3.68137000%) 0.0281100034
201779067 11.12 168.542699 4988131 27.24291 50001 12.2599 0000 0,253510.0360
201828749 11.56 175.654342 5.894323 33.50937 59923 5.1554109037 0.0267+000%
201855371 13.00 178.329775 6.412261 179715109013 9.9412100033 0.031119%939
201912552 12.47 172.560460 7.588391 32.941079993 28.1834100051 0.05137 903
201929294 12.97 174.656969 7.959611 5.0084 50001 4.5703+9:9022 0.1163* 0011
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STELLAR AND PLANETARY PROPERTIES OF K2 CAMPAIGN 1 CANDIDATES AND VALIDATION OF 17
PLANETS, INCLUDING A PLANET RECEIVING EARTH-LIKE INSOLATION
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ABSTRACT

The extended Kepler mission, K2, is now providing photometry of new fields every three months in a search for
transiting planets. In a recent study, Foreman-Mackey and collaborators presented a list of 36 planet candidates
orbiting 31 stars in K2 Campaign 1. In this contribution, we present stellar and planetary properties for all systems.
We combine ground-based seeing-limited survey data and adaptive optics imaging with an automated transit
analysis scheme to validate 21 candidates as planets, 17 for the first time, and identify 6 candidates as likely false
positives. Of particular interest is K2-18 (EPIC 201912552), a bright (K = 8.9) M2.8 dwarf hosting a 2.23 + 0.25
R, planet with T, = 272 £ 15 K and an orbital period of 33 days. We also present two new open-source software
packages which enable this analysis. The first, i sochrones, is a flexible tool for fitting theoretical stellar models
to observational data to determine stellar properties using a nested sampling scheme to capture the multimodal
nature of the posterior distributions of the physical parameters of stars that may plausibly be evolved. The second is
vespa, a new general-purpose procedure to calculate false positive probabilities and statistically validate
transiting exoplanets.

Key words: catalogs — planetary systems — planets and satellites: detection — stars: fundamental parameters



Table 3

Planet Properties for All Objects of Interest

Candidate Period (days) Epoch (BJD-2456808) Radius (R-) a/R, a (AU) Te (K) Disposition
201208431.01/K2-4b 10.00329 + 0.00159 7.5212 + 0.0080 2.37 + 0.40 27.79 + 0.72 0.0777 + 0.0012 563 + 11 Planet
201257461.01 50.27762 + 0.00785 20.3735 + 0.0397 209.52 £ 99.23 6.19 + 0.52 0.3049 + 0.0030 1466 + 52 FP
201295312.01 5.65706 + 0.00079 3.7187 &+ 0.0082 2.16 + 0.57 12.94 + 4.07 0.0633 + 0.0019 1211 + 154  Candidate
201338508.01/K2-5¢ 10.93406 + 0.00205 6.5947 + 0.0080 1.92 £+ 0.20 32.27 £ 0.71 0.0783 + 0.0007 511+ 9 Planet
201338508.02/K2-5b 5.73491 + 0.00061 0.8640 + 0.0063 1.92 + 0.23 20.99 + 046  0.0509 + 0.0004 634 + 12 Planet
201367065.01/K2-3b 10.05448 + 0.00033 5.4177 + 0.0015 1.98 £+ 0.10 30.72 + 0.75 0.0740 + 0.0009 504 + 9 Planet
201367065.02/K2-3¢ 24.64745 + 0.00152 4.2759 + 0.0030 1.56 + 0.10 5585 + 1.36  0.1345 £ 0.0016 374 + 7 Planet
201384232.01/K2-6b 30.94191 + 0.00467 19.5014 + 0.0090 2.50 + 0.88 50.27 +24.56  0.1898 + 0.0056 615 + 105 Planet
201393098.01/K2-7b 28.67992 + 0.00947 16.6155 + 0.0149 2.67 £ 0.56 40.29 + 8.19 0.1814 + 0.0043 651 + 61 Planet
201403446.01 19.15344 + 0.00607 7.3412 + 0.0152 2.04 £+ 0.46 27.05 + 5.87 0.1408 + 0.0040 889 + 88 Candidate
201445392.01/K2-8b 10.35176 + 0.00133 5.6119 + 0.0053 2.97 + 0.51 24.94 + 0.79 0.0856 + 0.0012 691 + 14 Planet
201445392.02 5.06468 + 0.00063 5.0663 + 0.0071 231 £0.33 1549 +£ 049  0.0531 + 0.0008 877 + 17 Candidate
201465501.01/K2-9b 18.44883 + 0.00137 14.6723 + 0.0030 1.60 + 0.42 74.76 + 6.66  0.0848 + 0.0050 284 + 14 Planet
201505350.01/K2-19¢ 11.90691 + 0.00037 9.2764 + 0.0018 431 + 0.49 24.09 + 248  0.0965 £ 0.0017 797 + 42 Planet
201505350.02/K2-19b 7.91943 + 0.00007 5.3836 + 0.0005 7.11 + 0.81 18.35 + 1.89  0.0735 £ 0.0013 913 + 48 Planet
201546283.01 6.77131 + 0.00012 4.8440 + 0.0022 577 £3.24 17.56 + 9.24 0.0668 + 0.0029 991 + 239  Candidate
201549860.01 5.60840 + 0.00055 4.1181 £ 0.0047 2.20 £+ 0.40 17.42 £+ 0.46 0.0555 + 0.0008 766 + 14 Candidate
201555883.01 FpP®
201565013.01 8.63810 + 0.00024 3.4284 + 0.0016 1599 + 9.19 28.07 + 2.68 0.0669 + 0.0031 536 + 37 Candidate
201569483.01 5.79687 + 0.00000 5.3135 + 0.0004 27.81 + 3.56 15.68 + 1.91 0.0589 + 0.0015 930 + 51 FP
201577035.01/K2-10b 19.30691 + 0.00127 11.5768 + 0.0033 3.92 + 0.69 32.74 + 5.15 0.1374 + 0.0025 703 £ 55 Planet
201596316.01/K2-11b 39.93767 + 0.23229 21.8290 + 0.1156 7.55 +9.33 45.08 + 58.53  0.2257 + 0.0143 734 + 253 Planet
201613023.01/K2-12b 8.28212 + 0.00060 7.3734 + 0.0054 2.33 + 0.58 17.47 £+ 5.05 0.0802 £ 0.0021 1003 + 121 Planet
201617985.01 7.28161 + 0.00078 4.6366 + 0.0047 1.78 + 043 26.04 + 1.16  0.0586 + 0.0012 518 + 16 Candidate
201629650.01/K2-13b 39.91488 + 0.32477 4.5250 + 0.0146 1.89 £+ 0.95 79.69 £ 63.37 0.2114 £ 0.0061 511 + 126 Planet
201635569.01/K2-14b 8.36802 + 0.00019 3.4513 £+ 0.0013 481 £ 0.42 30.16 £ 0.69  0.0627 + 0.0006 488 + 8 Planet
201649426.01 27.77045 £ 0.00008 13.3482 + 0.0012 32.79 + 9.01 59.26 + 13.58  0.1517 £ 0.0097 441 + 42 FP
201702477.01 40.73620 + 0.00266 3.5455 + 0.0025 7.28 + 1.10 56.98 + 7.61 0.2205 + 0.0053 529 + 36 Candidate
201736247.01/K2-15b 11.81040 + 0.00204 3.8509 + 0.0076 2.48 + 0.30 28.84 + 1.98 0.0910 + 0.0018 676 + 26 Planet
201754305.01/K2-16¢ 19.07536 + 0.00490 1.4854 + 0.0119 2.14 +£ 041 4143 £ 134 0.1220 + 0.0021 523 + 12 Planet
201754305.02/K2-16b 7.62067 + 0.00095 3.6802 + 0.0054 2.13 + 0.37 22.47 + 0.73 0.0662 + 0.0011 710 + 16 Planet
201779067.01 27.24273 + 0.00012 12.2601 =+ 0.0003 31.73 £ 5.25 38.25 £3.72  0.1718 £ 0.0022 707 + 34 FP
201828749.01 33.51569 + 0.00232 5.1504 + 0.0034 3.83 + 3.25 67.09 + 67.64  0.1875 £ 0.0090 613 + 239  Candidate
201855371.01/K2-17b 17.96753 + 0.00152 9.9462 + 0.0035 2.23 +0.20 39.38 + 0.85 0.1190 + 0.0020 487 + 10 Planet
201912552.01/K2-18b"  32.94488 + 0.00281 28.1849 + 0.0027 2.24 +0.23 83.83 + 9.03 0.1491 + 0.0055 272 +£ 15 Planet
201929294.01 FP®
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This site is dedicated to tracking the orbits of exoplanets in relation to their Habitable Zones.
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"The Earth is the only world known so far to harbor life. There is nowhere else, at least in
the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or
not, for the moment the Earth is where we make our stand.” - Carl Sagan
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No, the Exoplanet K2-18b Is No/
Habitable

News outlets that said otherwise are just crying

wolf—but they're not the only ones at fault Hubble

Astronomische Sensation

Wasserdampf auf Planet K2-18I By Laura Kreidberg on September 23, 2019 NASA's Hubble Finds Water Vapor on Habitable-Zone Exoplanet for 1st Time
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ABSTRACT

Ever since the discovery of the first exoplanet, astronomers have made steady progress towards
finding and probing planets in the habitable zone of their host stars, where the conditions could be
right for liquid water to form and life to sprawl. Results from the Kepler mission indicate that the
occurrence rate of habitable-zone Earths and super-Earths may be as high as 5-20%. Despite this
abundance, probing the conditions and atmospheric properties on any of these habitable-zone planets
is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor
and the likely presence of liquid water clouds in the atmosphere of the 8.6 Mg habitable-zone planet
K2-18b. With a 33 day orbit around a cool M3 dwarf, K2-18b receives virtually the same amount of
total radiation from its host star (1441 +80 W/m?) as the Earth receives from the Sun (1370 W/m?),
making it a good candidate to host liquid water clouds. In this study we observed eight transits
using HST/WFC3 in order to achieve the necessary sensitivity to detect water vapor. While the thick
gaseous envelope of K2-18b means that it is not a true Earth analogue, our observations demonstrate
that low-mass habitable-zone planets with the right conditions for liquid water are accessible with
state-of-the-art telescopes.

Keywords: planets and satellites: individual (K2-18b) — planets and satellites: atmospheres

1. INTRODUCTION

The recent discovery of the transiting 8.63 £ 1.35 Mg,
exoplanet K2-18b in the habitable zone of a bright,

nearby M3-dwarf provides us with an opportunity to
carry out the spectroscopic study of the atmosphere of a
habitable-zone planet outside our solar system (Montet
et al. 2015, Benneke et al. 2017, Cloutier et al. 2019).
K2-18b is an intriguing planet because its equilibrium
temperature (265 + 5K at an albedo of A = 0.3) is po-
tentially very close to that of the Earth (257 K). The
planet’s predicted temperature provides the right con-
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Water vapour in the atmosphere of the habitable-
zone eight-Earth-mass planet K2-18 b

Angelos Tsiaras®*, Ingo P. Waldmann®*, Giovanna Tinetti©®, Jonathan Tennyson and

Sergey N. Yurchenko

In the past decade, observations from space and the ground
have found water to be the most abundant molecular specles,
after h gen, in the h of hot,

planets‘ . Being the main molecular carrier of oxygen, water
is a tracer of the origin and the evolution mechanisms of plan-
ets. For temperate, terrestrlal planets, the presence of water
is of great importance as an indi
Being small and relatlvely cold these planets and thelr atmo-
spheres are the most ct to observe, and th no

heric spectral si; have so far been d d

planet within the star’s habitable zone (~0.12-0.25 Av) (ref. *°), with
effective temperature between 200K and 320K, depending on the
albedo and the emissivity of its surface and/or its atmosphere. This
crude estimate accounts for neither possible tidal energy sources’
nor atmospheric heat redistribution'"?, which might be relevant for
this planet. Measurements of the mass and the radius of K2-18 b
(planetary mass M,=7.96+1.91 Earth masses (M) (ref. **), plan-
etary radius R,=2.279+0.0026 R, (ref. *)) yield a bulk density of
3.3+1.2gcem™ (ref. ), suggesting either a silicate planet with an
tended atmosp} or an interior composition with a water (H,0)

Super-Earths—planets lighter than ten Earth masses—aronnd
later-type stars may provide our first opportunity to study
spectroscopically the characteristics of such planets, as they
are best suited for transit observatlons Here, we report the
d of a of water in the atmo-
sphere of K2-18 b—a planet of elght Earth masses in the hab-
itable zone of an M dwarf’—with high

mass fraction lower than 50% (refs. -*%).

‘We analyse here eight transits of K2-18 b, obtained with the
'WEFC3 camera on board the HST. We used our publicly available
tools, specialized for HST/WFC3 data™’, to perform the end-to-end
analysis from the raw data to the atmospheric parameters. The tech-
niques used here have been validated by the analysis of the largest

logue of exopl y spectra from WFC3". Details can be found

(Atmospheric Detectability Index®=5.0, -3.66 (refs. *°)).
In addition, the derived mean molecular weight suggests an

here still ining some hyd The observations
were recorded with the Hubble Space Telescope/Wide Field
Camera 3 and lysed with our dedi d, publicly avail
algorithms®®. Although the suitability of M dwarfs to host
habitable worlds is still under discussion'®-", K2-18 b offers an
unprecedented opportunity to gain insight into the composi-
tion and climate of habitable-zone planets.

Atmospheric characterization of super-Earths is currently within
reach of the Wide Field Camera 3 (WFC3) on board the Hubble
Space Telescope (HST), combined with the recently implemented
spatial scanning observational strategy'’. The spectra of three hot
transiting planets with radii less than 3.0 Earth radii (R,) have been
published so far: Gliese 1214 b'"*, HD 97658 b'* and 55 Cancri e'’.
The first two do not show any evident transit depth modulation
with wavelength, suggesting an atmosphere covered by thick clouds
or made of molecular species heavier than hydrogen, while only the
spectrum of 55 Cancri e has revealed a light-weight atmosphere,
suggesting hydrogen-helium (H,-He) still being present. In addi-
tion, transit observations of six temperate Earth-size planets around
the ultra-cool dwarf TRAPPIST-1—planets b, ¢, d, e, f* and g"*—
have not shown any molecular signatures and have excluded the
presence of cloud-free H,~He atmospheres around them.

K2-18 b was discovered in 2015 by the Kepler spacecraft” and
is orbiting around an M2.5 (metallicity [Fe/H]=0.123+0.157 dex
(units of decimal exponent), effective temperature T,;=3,457 + 39K,
stellar mass M, =0.359+0.047 solar masses (M,), stellar radius
R, =0.411+0.038 solar radii (R,))" dwarf star, 34pc away from
the Earth. The star-planet distance of 0.1429 au (ref. ) suggests a

in Methods, and links to the data and the codes used can be found
in ‘Data availability’ and ‘Code availability} respectively. Along with
the data, we provide descriptions of the data structures and instruc-
tions on how to reproduce the results presented here. Our analysis
resulted in the detection of an atmosphere around K2-18 b with an
Atmospheric Detectability Index’ (ADI; a positively defined loga-
rithmic Bayes factor) of 5.0, or approximately 3.6¢ confidence®’,
making K2-18 b the first habitable-zone planet in the super-Earth
mass regime (1-10 Mg) with an observed atmosphere around it.

More specifically, nine transits of K2-18 b were observed as part
of the HST proposals 13665 and 14682 (principal investigator: Bjérn
Benneke), and the data are available through the Mikulski Archive
for Space Telescopes (MAST; see ‘Data availability’). Each transit
was observed during five HST orbits, with the G141 infrared grism
(1.1-1.7 pm), and each exposure was the result of 16 up-the-ramp
samples in the spatial scanning mode. The ninth transit observation
suffered from pointing instabilities, and we therefore decided not
to include it in this analysis. We extracted the white and the spec-
tral light curves from the reduced images, following our dedicated
methodology™'”*, which has been integrated into an automated,
self-consistent and user-friendly Python package named Iraclis
(see ‘Code availability’). No systematic variations of the white light
curve, R/R,, appeared between the eight different observations.
This level of stability among the extracted broadband transit depths
is not always guaranteed, as consistency problems among different
observations emerged in previous analyses™'*

Inouranalysis, we found that the measured mid-transit times were
not consistent with the expected ephemeris'. We used these results
to refine the ephemeris of K2-18 b to be P=32.94007 +0.00003
days and T,=2457363.2109+0.0004BJDyy, (ref. *), where P

Department of Physics & Astronomy, University College London, London, UK. *e-mail: atsiaras@star.ucl.ac.uk; ingo@star.ucl.ac.uk
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Herb Simon, 1956

“Machines will be capable, within twenty years, of doing any work a man can do”



Toward causal representation learning

Core Problem of Statistical Representations: Representation learn-
ing only includes statistical information — it does not capture interventions,
reasoning, planning.

Core Problem of Causal Representations: SCMs are usually at the
symbolic level — they assume the causal variables are given.

https://arziv.org/abs/2102.11107



Independent mechanisms and the disentangled factorization

Factorization

e independent noises in the causal graph:

p(Xi,..., Xa) =], _ p(Xi|PA)

Bernhard Schélkopf



Independent mechanisms and the disentangled factorization

https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/2102.11107

Disentangled (causal) factorization

e independent noises in the causal graph:
p(X17 0o c 7Xn) — Hle p (X7 ‘ PAI)

e independent mechanisms: changing one p (X; | PA;) does not change the other
p (X, | PA;) (5 # 4); they remain invariant

(Janzing & Scholkopf, IEEE Trans. Inf. Th. 2010; Schélkopf et al., ICML 2012),
cf. autonomy, (structural) invariance, separability, exogeneity, stability, modularity: (Aldrich, 1989; Pearl, 2009)

Special case: If the graph has no edges, disentanglement reduces to statistical independence:
n
p(X17 s 7XTL) — lel p (X1>

In general, the causal factors will not be statistically independent, and independence-based
methods struggle to find them (Trauble et al., ICML 2021) '

Bernhard Schélkopf


https://arxiv.org/abs/1911.10500
https://arxiv.org/abs/2102.11107

Entangled factorizations

Disentangled (causal) factorization

p(Xi,.. X)) =], p ([ PA)

Entangled (non-causal) factorizations
e.g.,
p(X17 SRR 7Xn) — H[—lp(Xi ‘ Xi—l—la SR 7Xn>

e cannot intervene on p(X; | Xiji1,..., Xp)

e changing one p (X; | PA;) will usually change many of the p(X; | X;i1,...,X,)

https://arxiv.org/abs/1911.10500

Bernhard Schélkopf



Causal viewpoint on distribution shift

Disentangled causal factorization
p(X17 R 7X’Il) — HI:1 P <XI ‘ PA7)

with independent mechanisms p (X, | PA;).

Sparse Mechanism Shift Hypothesis: small distribution changes manifest themselves
sparsely in the disentangled factorization, i.e., they should usually not affect all factors
simultaneously.

Here, a shift can be passive (e.g., distribution drift) or active (intervention, action).

Stated in (Parascandolo et al., arXiv:1712.00961 (2017); Bengio et al., arXiv:1901.10912 (2019), Schélkopf, arXiv:1911:10500
(2019)); see also (Schélkopf et al., ICML 2012, Schélkopf, Janzing, Lopez-Paz 2016, Zhang et al., ICML 2013, Huang, Zhang et

al., JMLR 2020)

https://arxiv.org/abs/1911.10500

Bernhard Schélkopf



Causal tralnlng Exp; c:r a :i: Flo[w] E
Exp; [l T[a| I[a|F[ F[o[HE
Expz flll™ [2 [T ]a]q[H][¢[H]E

° . . . Exp4an€\c_'f"U}‘t

ICM training: encourage independence of mechanisms a4 oECuLGE:
Expe ElTi J ko IS t
EXi? vre; 13 ‘:jf o[ E
Exps Rell™ [ [J[ad [t [r|E
Expo [ o | 3]s t[o[r]E

Structural training: embed SCM structure into decoder architecture and train

by reconstruction error é

q . ”] [ﬂ
Counterfactual training: require that interventions produce valid ima
(e.g., after reconstruction in an autoencoder). Original Gouneracting

e
= -
-
25
|
@2
O o
-
£

Sparse mechanism shift training: require that
tions/interventions, only a sparse set of causal represent

Bernhard Schélkopf



Learning independent mechanisms

(with Parascandolo, Kilbertus, Rojas-Carulla, ICML 2018)

e Data drawn from p(x),
transformed by M
mechanisms fi, ..., fig

@ Goal: learn the
independent mechanisms
/ factors of variation

@ Method: generative
model with competing
mechanisms

Original data

Transformed
data



Method

@ Mechanisms initialized ~
identity

@ The highest scoring mechanism

against the discriminator D wins

the example and is updated to
increase the score

@ D is trained on the original data
and against the winning outputs

%\j transformed
hee A

example

Experts %
x -
canonical
MNIST
7 - Discriminator

l N’ \ \
H}J?)X (E.r~1’ l()g(DOU(I)) + N/ Z IE-F"“Q (l()g(l o DOU(EOJ(I,)))))
|

j=1

0.0 0.1
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Accuracy of a CNN trained on MNIST for different test sets
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Recurrent Independent Mechanisms

Default Sparse Default Sparse
dynamics Communication dynamics Communication
g ) [ with Anirudh Goyal,
Alex Lamb,
” -__'.- - Jordan Hoffmann,
._ J . Shagun Sodhani,
Sergey Levine,
ui Yoshua Bengio
- 1l ||| B []
) L\_‘ = ICLR 2021
\_
= =P Query
— Passing Gradient
Input Input """ » No Passing Gradient
B Active RIM
D Inactive RIM
@ Key-Value Attention

A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine, Y. Bengio, and B. Scholkopf, 2019. Recurrent independent mechanisms.
arXiv:1909.10893.



Causal ity for non | | near ICA with Luigi Gresele*, Julius
(https://arxiv.org/abs/2106.05200) Stimper, Michel Besserve

p

von Kugelgen*, Vincent

4_'- /
Observe: nonlinear mixtures, x = f(s), of independent sources s N
Goal: recover the unobserved sources (blind source separation)
Problem: impossible in general [Hyvarinen & Pajunen, ‘99]
New: interpret mixing as causal process & constrain f using the ICM principle

ICM usually applied to cause distribution p, and mechanism pe (or f),
e.g., cause-effect discovery

But: in nonlinear ICA, cause (source distribution) is unobserved

af e

()Sl

51 o )

Independent mechanism analysis (IMA):
* |ICM at level of mixing function

e contributions g of each source to observed

Si S2
distribution be "independent” (not statistical) °)) Xy
. speaker.s’ positioqs not fine-tuned to room of E "||||'|'
accoustics and microphone placement !



. . with Luigi G le*, Juli :
Independent mechanism analysis  von kigeigen vircent

Stimper, Michel Besserve

IMA Principle: the influences of each source on the
observed distribution are independent in the sense that: of of

________ - 832
n af ds2 ‘ 50 [ T (e e ) .- - -
log |J¢(s)| = X7, 1og || £ (s) ; :
of of | | /
’ ds1 l sz || [Je| ¢
Geometric interpretation: corresponds to an : b
orthogonality condition on the columns of the Jacobian. : !
of Of
N 05’1 V 0.%‘1

Contrast function:

Cima(frps) = f (21;1108

« > 0, with equality iff. f is an orthogonal coordinate transformation -
* Invariant to reparametrisation of the sources by permutation and o i b it e
element-wise invertible nonlinearities r X

n/8

of
aSi

)| - 108 1)) pes)ds




with Luigi Gresele*, Julius ,, 

Independent mechanism analysis von Kiigelgen®, Vincent

Stimper, Michel Besserve

Theory Experimental results

Can rule out (in the sense that Cjy,4 is larger for) Even when assumptions are not perfectly satisfied,
well-known spurious ICA solutions: IMA seems useful to distinguish spurious solutions
e Darmois (inverse CDF) construction and recover the true sources

® Measure-preserving automorphisms (MPA)

Consistent with existing identifiability results for 1.2| = Darmois

. E MLP
linear ICA, and conformal maps. 10
g
L 0.6

8

MCC

1.0
0.91
0.
0.71
0

61

a4

2 3
Number of MLP layers

Ground truth Observations Darmois Darmois + MPA /4




Structural Decoders

- ~200-700k parameters

X

Leeb et al. !
arXiv 2006.07796

.Qk

AdaTfm(x;,z) =z, xX + 2z, = y;

Scale and offset each pixel of
the conv features individually

D Static features
D Adaptive Transform

— Vector Split

D Convolutio
n

D Fully-connected

D Bilinear Upsampling




Quantitative Results

Reconstruction Quality FID Score for Gen (Hyb)

@ Conv @ Baseline @ Branch-Dec B4-AE-lin
80
B4-AE
B4-AE-deep
WAE bVAE
P
AE.. b.
VAE @ VAprVAE B6-AE
) f.n.__VAE pVAE o
) 40 °® WAEY ®
3 o o o B6-AE-deep
E B4-AE-lin
B4-AE-deep B4AE o B12-AE-lin
* B6-AE-lin o
20 B&:AEdeep o B12-AE
B12- E;I.i.n
B%%—ZA}E;Edeep B12-AE-dee
P P
[
0 0 50 100 150
3450 3460 3470 3480 3490 3500 3510

Reconstruction Loss (BCE)
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Interventional Representations (Besserve et al., ICLR 2020)

Latent r ezﬁ?r esentation Latent sample z; Latent sample 2o
1\3 2Z ///////7’;//////,”7//////7*;////// /
// 7 ///////75’//@

&

input

Latent

/////;’;//// / //////7?7//// /
hd hd
m Original 1 Original 2
VB TETIE0058E0855 5,
W v(z1)  v(zo
ST TIEEETENT

//////;?;//// /

hd

V=7
@ Hybrid sample

—————

Output |Endogenous variables

Support of
data distribution

Bernhard Schélkopf



Interventional Representations (Besserve et al., ICLR 2020)

Original
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Interventional Representations (Besserve et al., ICLR 2020)

Original 2

Original 1
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Self-supervised learning provably isolates content from style }‘g,.
(https.//arxiv.org/abs/2106.04619) ' g‘t{'.‘
| |

% Supervised .. %SimCLR (4x) with Julius von Kﬁgelgen*,

b s i@usassenivisarmssranions Giromsvarsissbonssssnitoammmnnocieen ot e o = * = = *
518 | HSimCLR (¢ Yash Sharma®, Luigi Gresele”,
2 e oCPCv2-L Wieland Brendel, Michel
8 70} wioLR o dMoCo @ Besserve, Francesco Locatello
3 oPIRL-c2x
< AMDIM
- 65F 2 oMoCo (2x)

& ‘CPCVZ PIRL-ens.
P PIRL SE iR
3 gof §MoCo 'gb!
< LA
&
£ 554 eRotation

a8 e|nstDisc

25 50 100 200 400 626

Number of Parameters (Millions)

(b) Crop and resize

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

Self-supervised learning using contrastive training
learn a representation which is insensitive to
augmentation but sensitive to changing the
example (NCE).

(f) Rotate {90°,180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Can think of both as interventions.

Figures from:
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations.
Chen, Kornblith, Norouzi, Hinton (ICML 2020; https://arxiv.org/abs/2002.05709)



https://arxiv.org/abs/2002.05709

Self-supervised learning provably isolates content from style

!
LA

Formalise generation x = [ (z) and augmentation X = /(Z ) processes ‘with Julius von Kiigelgen*,
as latent variable model with unknown content-style partition z = Yash Sharma*, Luigi Gresele*,
(c, s), interpreting style change as an intervention. Wieland Brendel, Michel

Besserve, Francesco Locatello

* invariant content c¢: shared between pairs (x, X) of views;
* varying style s: may change across pairs (x, X) of views.

style change
Allow causal dependence of style on content (Causal3DIdent dataset).

Given data (x, x) (nonlinear mixtures of content and style):

Theory: Can identify* invariant content partition in generative and
discriminative learning with entropy maximisation (e.g., SImCLR).

H E hulebg E .....-
., i |~ et | Rt B
@ @ ------------

Figure 2: (Left) Causal graph for the Causal3DIdent dataset. (Right) Two samples from each object class. *up to invertible transformation




Nonlinear Invariant Risk Minimization
(with Chaochao Lu, Yuhuai Wu, José Miguel Hernandez-Lobato, arXiv:2102.12353)

Problem
Key Idea:
— - Y Data representation @ (0) should be
o ont the direct cause of ¥.

Data Representation Invariant Classifier

This assumption is more general than the common

Independence assumption in latent variable models. i

 PraX|Y,E) =

Assumption on the Prior

P(X|Y,E)=PX l,...,XrIY,E)HP(X,-IY,E)

‘ i€l

) - exp((T(X), A(Y, E)))

Z(Y,E)

The prior is assumed to be

leading to IDENTIFIABILITY.


https://arxiv.org/abs/2102.12353

Experimental Results
(with Chaochao Lu, Yuhuai Wu, José Miguel Hernandez-Lobato, arXiv:2102.12353)

E

E~U{02,2,3,5)
X1 NN(XIIE,]-)
Xo NN(X2|2E7 2)

Y ~N(Y|X1 + X5,1)

0= g(Xl’X2)

Data Generating Process

Samples from iVAE
(Khemakhem et al. 2020)

& he 8 -
Yent .'c...:\

Samples f'roi;n VAE
(Kingma et al. 2013)

v’ e

Samples.from iCaRL

=0.1,p, = 0.2
o 5 1—p, {pe Pe }

* 1 Testing Env:
t=p. P P, = 0.9S}’

Table 2: Colored Fashion MNIST. Comparisons in
terms of accuracy (%) (mean = std deviation).

METHOD TRAIN TEST
ERM 83.17 = 1.01 22.46 £ 0.68
ERM 1 81.33 £1.35 33.34 £+ 8.85
ERM 2 84.39 4+ 1.89 13.16 & 0.82
ROBUST MIN MAX 82.81 +£0.11 29.22 4 8.56
F-IRM GAME 62.31 £ 2.35 69.25 + 5.82
V-IRM GAME 68.96 + 0.95 70.19 £+ 1.47
IRM 7901 +£0.26 55254+ 12.42
iCaRL (ours) 74.87 +0.36 73.56 +0.75
ERM GRAYSCALE  74.79 +0.37 74.67 + 0.48
OPTIMAL 5 75



https://arxiv.org/abs/2102.12353

Source-Free Adaptation to Measurement Shift via Bottom-
Up Feature ReStoratiOn (Cian Eastwood et al., https://arxiv.org/abs/2107.05446)

Source-free domain adaptation
-Development: train + equip model p:
-Deployment: adapt, no source data '

< ‘

Measurement shift (cf. Storkey, 2009) ’ O e i ( O
-New sensor, same underlying features m— O _J Ol Ie

Source data O ! O
Feature restoration =) = =
-Goal: extract same features, new env. Hacoder:  Cliasiifiir o Classifier
-Method: align (marginal) feature dists. 9s h h

Development Deployment

(=] - ~ w &
o - ~ w ks

i M N i
o [ N w S

-0.5 0.

—“ OO EEEEEEEE
S — -h




CausalWorld: A Robotic Manipulation Benchmark
for Causal Structure and Transfer Learning

Ahmed and Trauble et al.,
arXiv: 2010.04296,
ICLR 2021

radar_plots_automatic_evaluation_causal_rl_bench

mean_last_fractional_success

gravity

goal_poses_SPACE_A

colors

friction —p»

masses

Evaluate different generalization aspects by
intervening on a large range of different defining
variables of the hierarchical causal generative
world model of the robotic environment.
Benchmark with many challenging environments and fully documented code: https://github.com/rr-learning/CausalWorld

object_colors_SPACE_B

194



On the Transfer of Disentangled Representations §
in Realistic Settings |

New Disentanglement Dataset

More complex and realistic,
correlations between factors,

&8 o5

1 million
simulated

1800 real
(labeled)

Out-of-Distribution
Generalization of Downstream
Tasks

VAE training colors

[ v
[ & I\, AN J

downstream ooD OooD
training colors 1 2
color color

Task: predict value of non-OOD faétors
Train downstream task on
pre-trained representations

Test it OOD but still in the VAE's
training distribution (OOD1)

Test it OOD w.r.t. the VAE itself (OOD2)

Dittadi and Trauble et al.,
arXiv: 2010.14407,
ICLR 2021

Disentanglement has minor role
when represent. function is OOD
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mm <04

Generalization error (00OD2)
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Causal Curiosity: RL Agents Discovering Self-supervised Experiments
for Causal Representation Learning

Set of environments
Model M’

* Curiosity to discover causation in an

environment. ' . Lo) - T .. ‘Simplc model M’ encodes z
Bt O(er‘ L)
* Reward-free ) -

* Set Of enVironmentS Wlth InterVentiOnS T " Overflow L(O|M’) as negative reward
on causal factors

Fig 1: Experiment Discovery

* Use KOlmOgOFOV CompIeXity das rewa rd tO Temporal Clustering
RL agent o
Lt Module
. . Environment
* Agents producing self-supervised

experiments to test out mass, size etc.  Reset J{ Environment | + - Zy | Poliey Network |

Self-supervised Downstream task

Maximizing external
reward

Exploration Phase

Fig 2: Performing experiments sequentially to learn causal representations.
Representations used for downstream transfer.

Sontakke, Sumedh A., Arash Mehrjou, Laurent Itti, and Bernhard Schélkopf. "Causal Curiosity: RL Agents Discovering Self-
supervised Experiments for Causal Representation Learning." arXiv preprint arXiv:2010.03110 (2020). To appear at ICML 2021




Discovered Behaviors - Mujoco

Pirouette

Leap



Discovered Behaviors - CausalWorld

Rotate Behaviors




Discovered Behaviors - CausalWorld

' ; -

Dribble Pushing along y

Pushing along x Roll



Causal Influence Detection for Reinforcement Learning @ ‘ wb

(with Maximilian Seitzer and Georg Martius, arXiv:2106.03443) gﬂ\k

&
o

-

Robot can control object

Observations

* Real-world agents have limited interventional range
e Causal influence of agent on environment occurs
only sparsely

Idea

* Use causal influence to speed-up reinforcement
learning

Method

* Define measure of causal action influence as a
conditional mutual information

C(s):=1I(8",A|S =5s)

Causal influence on object impossible

e Estimate it from data using neural networks



Causal Influence Detection for Reinforcement Learning

(with Maximilian Seitzer and Georg Martius, arXiv:2106.03443)

Results

* Focusing on states with causal influence (exploration and
prioritization)

» Highly increased sample-efficiency on robotic
manipulation tasks
* Maximizing causal influence as intrinsic motivation

» Agent quickly discovers interesting behaviors (grasping,
lifting)

e
=

Success Rate

0.2 1

o
o
A

FETCHPICKANDPLACE

e ——

— CAI-All
PER
— HER

0 4 8 12 16 20

Rollouts x 1000

Fraction of Episode
o S o
i (o)) ow©

o
to

o
o

Agent Moves Object
— Agent Holds Object in Air

o

I 2 3 4 5
Rollouts x 1000

Brockmann et al. OpenAl Gym, arXiv:1606.01540



Generative scene models as causal models

Disentangled (causal) factorization

p(Xl, . ,Xn)

e independent noises in the causal graph:

= lel p(X; | PA;)

https://arziv.org/abs/1911.10500

e independent mechanisms: changing one p (X, | PA;) does not change the other
p (X, | PA;) (5 # 7); they remain invariant (implies intervenability)

[ Orientation } [ Lighting }

[ Position \ '/\‘
Object Appearance ]

’ . / Image
[ Intrinsic Properties ]




Presented at the ICLR 2020 workshop “Causal learning for decision making”

TOWARDS CAUSAL GENERATIVE SCENE MODELS
VIA COMPETITION OF EXPERTS

Julius von Kiigelgen*!!2, Ivan Ustyuzhaninov* {2,

Peter Gehler'?, Matthias Bethge'®, Bernhard Scholkopf*'*

!Max Planck Institute for Intelligent Systems Tiibingen, Germany
2Department of Engineering, University of Cambridge, United Kingdom
3University of Tiibingen, Germany

4 Amazon Tiibingen, Germany

{jvk, bs}@tuebingen.mpg.de,
{ivan.ustyuzhaninov,matthias.bethge}@bethgelab.org,
pgehler@amazon.com

ABSTRACT

Learning how to model complex scenes in a modular way with recombinable
components is a pre-requisite for higher-order reasoning and acting in the physical
world. However, current generative models lack the ability to capture the inherently
compositional and layered nature of visual scenes. While recent work has made
progress towards unsupervised learning of object-based scene representations, most
models still maintain a global representation space (i.e., objects are not explicitly
separated), and cannot generate scenes with novel object arrangement and depth
ordering. Here, we present an alternative approach which uses an inductive bias
encouraging modularity by training an ensemble of generative models (experts).
During training, experts compete for explaining parts of a scene, and thus specialise
on different object classes, with objects being identified as parts that re-occur
across multiple scenes. Our model allows for controllable sampling of individual
objects and recombination of experts in physically plausible ways. In contrast to
other methods, depth layering and occlusion are handled correctly, moving this
approach closer to a causal generative scene model. Experiments on simple toy data
qualitatively demonstrate the conceptual advantages of the proposed approach.

1 INTRODUCTION
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Proposed in the early days of computer vision|Grenander (1976); Horn! (1977), analysis-by-synthesis
is an approach to the problem of visual scene understanding. The idea is conceptually elegant and
appealing: build a system that is able to synthesize complex scenes (e.g., by rendering), and then
understand analysis (inference) as the inverse of this process that decomposes new scenes into their
constituent components. The main challenges in this approach are the need for generative models of
nhiecte (and their comnncitinn inta ecenec) and the need tn nerfarm tractahle inference oiven new

arXiv



Tangemann, Schneider et al., 2021
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Towards causal machine learning

learn world models (aka digital twins) that are
(1) data-efficient
 use data from multiple tasks in multiple environments

 use re-usable components that are robust across tasks, 1.e., causal
(independent) mechanisms
» disentanglement as a causal problem

« bias RL to search for invariance / find models where shifts are sparse

(2) terventional

[ORNZ

* move representation learning towards interventional representations: REReIS

“thinking is acting is an imagined space” (Konrad Lorenz) ---
planning, reasoning, ...

2} \§\ e - cf. Scholkopf, Janzing, Lopez-Paz 2016
i\\\\\\\\\\ — : : P, g p
&& AN European Laboratory for Learning and Intelligent Systems [CML 201 7 Z—alk, htlpS//VlMGO COI’I’Z/2382 74659
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=
Toward Causal

Representation Learning

This article reviews fundamental concepts of causal inference and relates them to crucial
open problems of machine learning, including transfer learning and generalization,
thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD SCHOLKOPF" , FRANCESCO LOCATELLO 1'5', STEFAN BAUER™ , NAN ROSEMARY KE,
NAL KALCHBRENNER, ANIRUDH GOYAL, AND YOSHUA BENGIO™

ABSTRACT | The two fields of machine learning and graphical
causality arose and are developed separately. However, there
is, now, cross-pollination and increasing interest in both fields
to benefit from the advances of the other. In this article,
we review fundamental concepts of causal inference and relate
them to crucial open problems of machine learning, including
transfer and generalization, thereby assaying how causality
can contribute to modern machine learning research. This also
applies in the opposite direction: we note that most work in
causality starts from the premise that the causal variables
are given. A central problem for Al and causality is, thus,
causal representation learning, that is, the discovery of high-
level causal variables from low-level observations. Finally,
we delineate some implications of causality for machine learn-
ing and propose key research areas at the intersection of both
communities.

KEYWORDS | Artificial intelligence; causality; deep learning;
representation learning.

Manuscript received August 14, 2020; revised December 29, 2020; accepted
February 8, 2021. Date of publication February 26, 2021: date of current version
April 30, 2021. (Bernhard Schélkopf and Francesco Locatello contributed equally
to this work. Stefan Bauer and Nan Rosemary Ke contributed equally to this
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IL.INTRODUCTION
If we compare what machine learning can do to what
animals accomplish, we observe that the former is rather
limited at some crucial feats where natural intelligence
excels. These include transfer to new problems and any
form of generalization that is not from one data point
to the next (sampled from the same distribution), but
rather from one problem to the next—both have been
termed generalization, but the latter is a much harder form
thereof, sometimes referred to as horizontal, strong, or out-
of-distribution generalization. This shortcoming is not too
surprising, given that machine learning often disregards
information that animals use heavily: interventions in the
world, domain shifts, and temporal structure—by and
large, we consider these factors a nuisance and try to engi-
neer them away. In accordance with this, the majority of
current successes of machine learning boil down to large-
scale pattern recognition on suitably collected independent
and identically distributed (i.i.d.) data.

To illustrate the implications of this choice and its rela-
tion to causal models, we start by highlighting key research
challenges.

A. Issue 1—Robustness
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