Lecture 8 (Nathan Kutz)

Problem 1

What is a standard approach for tackling an ill-posed problem?

- (a) Use regularization.
- **(b)** Acquire more data.
- (c) Use a different coordinate system.

Note: Another common approach is to choose a different problem ;-)

Problem 2

For $x(t) \in \mathbb{R}$, we estimate the governing equations of the system:

$$\dot{x}(t) = -\sin(x(t)), \quad t \ge 0,$$

by solving the following regularized regression problem:

$$\min_{\Theta \in \mathbb{R}^{5}} \left| \begin{pmatrix} \dot{x}(t_{1}) \\ \dot{x}(t_{2}) \\ \dot{x}(t_{3}) \\ \vdots \end{pmatrix} - \begin{pmatrix} 1 & x(t_{1}) & x(t_{1})^{2} & x(t_{1})^{3} & x(t_{1})^{4} \\ 1 & x(t_{2}) & x(t_{2})^{2} & x(t_{2})^{3} & x(t_{2})^{4} \\ 1 & x(t_{3}) & x(t_{3})^{2} & x(t_{3})^{3} & x(t_{3})^{4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \cdot \begin{pmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{4} \end{pmatrix} \right|^{2} + \lambda \sum_{i=0}^{4} |\theta_{i}|,$$

where $\lambda > 0$ is the regularization parameter and $\Theta = (\theta_0, \dots, \theta_4)$. The trajectory x(t) is initialized at x(0) = 0.1 and $t_1 = 0.1$, $t_2 = 0.2$, $t_3 = 0.3$, Which of the coefficients θ_i are expected to be non-zero for a well-chosen parameter λ that promotes sparsity?

- (a) θ_0
- (b) θ_1
- (c) θ_2
- (d) θ
- (e) θ_4