Lecture 2

This document provides practice problems that are similar to those that will be asked during the final exam. Please note that the document reflects the style and <u>not the number</u> of the questions that will be on the exam.

Problem 1

Consider the following <u>zero-sum game</u>, where two players P_1 and P_2 can choose between actions A and B, and receive the payoff according to the following table:

		P_2	
		A	В
P_1	А	3	1
	В	4	5

For example, if P_1 selects action A and P_2 selects action B, then P_1 receives reward 1, while P_2 receives reward -1. Which of the following statements are correct?

- (a) The action profile where P_1 chooses A and P_2 chooses B corresponds to a Nash equilibrium. [False]
- (b) The action profile where P_1 chooses *B* and P_2 chooses *B* corresponds to a Nash equilibrium. [False]
- (c) The action profile where *P*₁ chooses *B* and *P*₂ chooses *A* corresponds to a Nash equilibrium. [True] Explanation: Given that *P*₂ plays *A*, *P*₁ has no incentive to deviate from *B*. Similarly, given that *P*₁ plays *B*, *P*₂ has no incentive to deviate from *A*.
- (d) The game has only a Nash equilibrium if the two players are allowed to play mixed strategies. [False]

Problem 2 (answers updated on December 20, 2021)

Consider the following <u>zero-sum game</u> where players P_1 and P_2 can choose between actions A and B and receive a payoff according to the following table:

$$\begin{array}{c|c} & P_2 \\ & A & B \\ \hline A & 0.5 & 1 \\ B & 3 & x \end{array}$$

where $x \in \mathbb{R}$. Which of the following statements are correct?

- (a) There exists a Nash equilibrium with mixed strategies for any x < 1. [True]
- (b) For all x ∈ ℝ there exists a unique Nash equilibrium. [False] Explanation: See discussion on Moodle: https://moodle-app2.let.ethz.ch/mod/forum/discuss.php?d=94366.
- (c) If P_2 plays according to the (Nash) equilibrium strategy, their strategy will be pure for $x \ge 1$. [True]

Hint: Sketch the expected reward for both players, as we did in the lecture.

Problem 3 (question and answers updated on November 17, 2021)

Let $A \in \mathbb{R}^{2 \times 2}$,

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{11} + c & a_{12} + c \end{array} \right),$$

describe the rewards of a two-player zero sum game. For example, if Player 1 plays action 1 and Player 2 plays action 2, Player 1 receives reward a_{12} , whereas Player 2 receives reward $-a_{12}$. Both players play according to Nash equilibrium strategies.

Which of the following conditions are true for arbitrary a_{11} , a_{12} , $a_{11} \neq a_{12}$, and $c \neq 0$?

- (a) Player 1 has a pure strategy. [True]
 Explanation: If c > 0, Player 1 always plays action 2; if c < 0, Player 1 always plays action 1.
- (b) Player 1 has a strictly mixed strategy. [False]
- (c) Player 2 has a strictly mixed strategy. [False] Explanation: Similar reasoning as for Player 1.
- (d) None of the above. [False]

Problem 4

Let $A \in \mathbb{R}^{2 \times 2}$ be given as

$$A = \left(\begin{array}{cc} 0.5 & 1\\ 2 & 0.5 \end{array}\right),$$

and let

$$x^* := \operatorname*{arg\,max}_{x \in \Delta} \left(\min_{y \in \Delta} \left(x^\top A y
ight)
ight), \qquad y^* := \operatorname*{arg\,min}_{y \in \Delta} \left(\max_{x \in \Delta} \left(x^\top A y
ight)
ight),$$

where Δ denotes the two-dimensional unit simplex, that is, $\Delta := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0, x_2 \ge 0, x_1 + x_2 = 1\}$. Which of the following results is correct?

(a) $x^* = (3/4, 1/4), y^* = (1/4, 3/4).$ [True]

Explanation: There are multiple ways how to arrive at this solution: Version 1: Let $x = (p \quad 1-p)^{\top}$ and $y = (q \quad 1-q)^{\top}$. In this case, $x^T A y = 0.5 + 0.5p + 1.5q - 2pq =: f(p,q)$. To find the critical points of this function, we compute: $\partial/\partial p f = 0.5 - 2q \stackrel{!}{=} 0 \Rightarrow q = 1/4$, and $\partial f/\partial q = 1.5 - 2p \stackrel{!}{=} 0 \Rightarrow p = 3/4$.

Version 2: We recognize that solving the saddle point problem is equivalent to finding the (mixed-strategy) Nash equilibrium for a zero-sum game with payoff matrix *A*. Let the two strategies be parametrized as $x = (p \quad 1-p)^{\top}$ and $y = (q \quad 1-q)^{\top}$. To find the optimal strategy x^* for player 1, we look at her expected payoff. If player 2 plays action 1, the expected payoff for player 1 is 0.5p + 2(1-p); if player 2 plays action 2, the expected payoff for player 1 is p + 0.5(1-p). Since player 1 optimizes the worst case, she chooses *p* such that $0.5p + 2(1-p) \stackrel{!}{=} p + 0.5(1-p)$, which yields p = 3/4. An analogous argument for player 2 yields q = 1/4.

- **(b)** $x^* = (1/4, 3/4), y^* = (3/4, 1/4).$ [False]
- (c) $x^* = (2/3, 1/3), y^* = (1/4, 3/4).$ [False]
- (d) $x^* = (1,0), y^* = (0,1).$ [False]
- (e) None of the above. [False]

Problem 5

Is the following statement correct: "Any two-player game with a finite number of actions admits a Nash equilibrium with mixed strategies"?

(a) Yes. [True]

Explanation: This result is called Nash's Existence Theorem and was proven in the lecture.

(b) No. [False]

Problem 6

Consider a zero-sum game with two players and a finite number of actions which has a mixed Nash equilibrium. Is this equilibrium necessarily unique?

- (a) Yes. [False]
- (b) No. [True]

Explanation: Consider the counter-example of a game with constant payoff 1 for player 1 and -1 for player 2 (for every combination of actions).