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Lecture 1
This document provides practice problems that are similar to those that will be asked during the final exam. Please
note that the document reflects the style and not the number of the questions that will be on the exam.

Problem 1
Let 𝑓 (𝑥 ;𝛼) be a machine learning classifier parametrized by 𝛼 in the hypothesis class Λ. Let the true risk

𝑅(𝛼) = E(𝑋,𝑌 )∼𝑃 [𝑙 (𝑓 (𝑋 ;𝛼), 𝑌 )]

be empirically approximated by 𝑅(𝛼) = ∑𝑛
𝑖=1 𝑙 (𝑓 (𝑥𝑖 ;𝛼), 𝑦𝑖 ) based on 𝑛 samples {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, which are (mutually)

independent and identically distributed. For the 0–1 loss and a finite hypothesis class of size𝑚, we derived the bound

𝑅(𝛼) ≤ 𝑅(𝛼) +
√︂

log𝑚 − log𝛿
2𝑛 ,

with probability at least 1 − 𝛿 for arbitrary 0 < 𝛿 < 1. We call the term
√︁
(log𝑚 − log𝛿)/(2𝑛) the generalization gap.

Suppose now our hypothesis class consists of the functions 𝑓 (𝑥 ;𝛼) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3, where 𝛼𝑖 ∈ {0, 1, . . . , 5},
and let us compare the following two scenarios:

• Scenario 1: We set the bias 𝛼0 = 0 and use a training dataset of size 𝑛 > 0.

• Scenario 2: We use a training dataset of size 9𝑛.

If 𝐺1 and 𝐺2 denote the generalization gap in Scenario 1 and Scenario 2, respectively, then the ratio 𝐺2/𝐺1 is:

(a) 𝐺2/𝐺1 = 1/
√
6 for all 0 < 𝛿 < 1. [False]

(b) 𝐺2/𝐺1 =
√
6 for 𝛿 = 1/5. [False]

(c) 𝐺2/𝐺1 = 2/(3
√
3) for all 0 < 𝛿 < 1. [False]

(d) 𝐺2/𝐺1 = 3
√
3/2 for 𝛿 = 1/10. [False]

(e) 𝐺2/𝐺1 =
√
5/6 for 𝛿 = 1/6. [True]

Explanation: In scenario 1, we are looking at𝑚1 = 63 hypotheses (6 options each for 𝛼1, 𝛼2, 𝛼3); in scenario 2, we have𝑚2 = 64 . Plugging this into the
formula for the generalization gap (together with 𝛿 = 1/6 = 6−1 and the data set sizes) and using calculation rules for logarithms gives𝐺2/𝐺1 =

√
5/6.

Problem 2
Let 𝑋 be a continuous random variable, uniformly distributed in [1, 2]. Which of the following statements is true?

(a) E[𝑒𝑋 ] < 𝑒E[𝑋 ] [False]

(b) E[𝑒𝑋 ] = 𝑒𝐸 [𝑋 ] [False]

(c) E[𝑒𝑋 ] > 𝑒E[𝑋 ] [True]
Explanation: This is a direct application of Jensen’s inequality: 𝜑 (E[𝑋 ]) ≤ E[𝜑 (𝑋 ) ] for convex 𝜑 . For an alternative derivation, consider this:

E[exp{𝑋 }] = E[exp{𝑋 + E[𝑋 ] − E[𝑋 ] }] = exp{E[𝑋 ] } · E[exp{𝑋 − E[𝑋 ] }] ≥ exp{E[𝑋 ] } · E[1 +𝑋 − E[𝑋 ] ] = exp{E[𝑋 ] } ,
using the linearity of the expectation, the fact that E[𝑐 ] = 𝑐 for constant 𝑐 , and the Taylor expansion exp(𝑥) = 1 + 𝑥 + . . . to get exp(𝑥) ≥ 1 + 𝑥 .

Note: This result has some important applications in statistical physics; for example, in mean field theory, which, in
turn, has found applications in machine learning.
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Problem 3
Tom plays roulette in a casino. At each round he bets 1 dollar on red. Let 𝑋𝑖 ∈ {0, 1} denote the random variable that
is equal to 1 if he wins and 0 if he loses at round 𝑖 , where 𝑖 = 1, 2, . . . , 𝑛. Which of the following statements are true?

(a) The random variables {𝑋𝑖 }𝑛𝑖=1 are dependent and identically distributed. [False]

(b) The random variables {𝑋𝑖 }𝑛𝑖=1 are dependent and not identically distributed. [False]

(c) The random variables {𝑋𝑖 }𝑛𝑖=1 are independent and identically distributed. [True]
Explanation: This follows directly from the fact that (by definition) all rounds are independent.

(d) The random variables {𝑋𝑖 }𝑛𝑖=1 are independent and not identically distributed. [False]

Note: In roulette, the ball lands uniformly on any of the numbers between 1 and 36 inclusive (we ignore the 0 here).
Half of the numbers are black, the others are red. The outcome at a given round is independent of all other rounds.

Problem 4
Tom plays roulette in a casino. At each round he bets 1 dollar either on red or on black. He starts by betting on red.
Whenever he loses he changes color (that is, if he lost when playing red, he will play black in the next round and vice
versa). Let 𝑋𝑖 ∈ {0, 1} denote the random variable that is equal to 1 if he wins and 0 if he loses at round 𝑖 , where
𝑖 = 1, 2, . . . , 𝑛. Which of the following statements are true?

(a) The random variables {𝑋𝑖 }𝑛𝑖=1 are dependent and identically distributed. [False]

(b) The random variables {𝑋𝑖 }𝑛𝑖=1 are dependent and not identically distributed. [False]

(c) The random variables {𝑋𝑖 }𝑛𝑖=1 are independent and identically distributed. [True]
Explanation: This follows directly from the fact that (by definition) all rounds are independent.

(d) The random variables {𝑋𝑖 }𝑛𝑖=1 are independent and not identically distributed. [False]

Problem 5
Consider a reinforcement learning agent who lives in an ordered state space {1, . . . , 𝐾}. In state 𝑥𝑖 =𝑚, the agent
chooses action 𝑎 ∈ {𝑚,𝑚 + 1,𝑚 + 2} uniformly at random and this causes its new state to be 𝑥𝑖+1 = 1 + (𝑎 mod 𝐾).
Consider the agent’s state trajectory 𝑥1, . . . , 𝑥𝑛 for some starting state 𝑥1. Are the variables 𝑥𝑖+1−𝑥𝑖 (for 𝑖 = 1, . . . , 𝑛−1)
independent and identically distributed in general?

(a) Independent and identically distributed. [False]

(b) Independent, but not identically distributed. [False]

(c) Dependent, but identically distributed. [False]

(d) Dependent and not identically distributed. [True]
Explanation: Consider, for example, what happens when the agent jumps from state 𝐾 to state 1 at iteration 𝑖 . In this case, the difference 𝑥𝑖+1 − 𝑥𝑖 is
negative. Such a jump (negative 𝑥𝑖+1 −𝑥𝑖 ) can only happen in cases, where 𝑥𝑖 ∈ {𝐾 − 2, 𝐾 − 1, 𝐾 }, which concludes that the random variables 𝑥𝑖+1 −𝑥𝑖 ,
𝑖 = 1, 2, . . . , 𝑛 − 1, are not identically distributed. Observing a negative 𝑥𝑖+1 − 𝑥𝑖 at iteration 𝑖 is (in general) informative for the difference 𝑥𝑖+2 − 𝑥𝑖+1 at
iteration 𝑖 + 1 because (for sufficiently large 𝐾 ) you cannot get two negative differences in a row. This implies that 𝑥𝑖+1 − 𝑥𝑖 are also dependent.
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Problem 6
Consider a random walk 𝑥𝑖+1 = 𝑥𝑖 + 𝑐𝑖 , 𝑖 = 0, 1, 2, . . . , where 𝑐𝑖 ∼ N(0, 1) are drawn independently (i.e., the 𝑐1, 𝑐2, . . .
are mutually independent), and where 𝑥0 = 0. Is 𝑥100 independent of 𝑥99?

(a) Yes. [False]

(b) No. [True]
Explanation: We have 𝑥100 ∼ N(0, 100) (sum of 100 independent normals with unit variance), but 𝑥100 ∼ N(𝑥99, 1) when conditioning on 𝑥99 . Hence
𝑥100 and 𝑥99 are not independent.

Problem 7
Let 𝑋 and 𝑌 be two discrete random variables that each take values in {0, 1, 2}. The following table summarizes their
joint probability distribution:

𝑌 = 0 𝑌 = 1 𝑌 = 2
𝑋 = 0 1/9 1/9 1/9
𝑋 = 1 2/9 1/9 0
𝑋 = 2 0 1/9 2/9

Are 𝑋 and 𝑌 independent?

(a) Yes. [False]

(b) No. [True]
Explanation: The joint probability distribution does not factorize: Pr(𝑋 = 1, 𝑌 = 0) = 2/9 ≠ 1/9 = 1/3 · 1/3 = Pr(𝑋 = 1) · Pr(𝑌 = 0) .

Problem 8
We roll a perfect die 5 times. Let 𝑋𝑖 ∈ {1, 2, . . . , 6} be the random variable that describes the outcome of the 𝑖-th throw.
What is the probability that

min
𝑖∈{1,2,...,5}

𝑋𝑖 < 2 ?

(a) 1 − (5/6)5 [True]
Explanation: Consider the complementary probability: We only have min𝑖∈{1,2,...,5} 𝑋𝑖 ≥ 2 if every time we roll the die we get at least a two. The
probability for this is (5/6)5 , hence we find: Pr

(
min𝑖∈{1,2,...,5} 𝑋𝑖 < 2

)
= 1 − Pr

(
min𝑖∈{1,2,...,5} 𝑋𝑖 ≥ 2

)
= 1 − (5/6)5 .

(b) (5/6)5 [False]

(c) (1/6)5 [False]

(d) 1 − (1/6)5 [False]
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